Spec-Zone .ru
спецификации, руководства, описания, API
Trail: Learning the Java Language
Lesson: Language Basics
Section: Operators
Assignment, Arithmetic, and Unary Operators
Home Page > Learning the Java Language > Language Basics

Assignment, Arithmetic, and Unary Operators

The Simple Assignment Operator

One of the most common operators that you'll encounter is the simple assignment operator "=". You saw this operator in the Bicycle class; it assigns the value on its right to the operand on its left:

 int cadence = 0;
 int speed = 0;
 int gear = 1;

This operator can also be used on objects to assign object references, as discussed in Creating Objects.

The Arithmetic Operators

The Java programming language provides operators that perform addition, subtraction, multiplication, and division. There's a good chance you'll recognize them by their counterparts in basic mathematics. The only symbol that might look new to you is "%", which divides one operand by another and returns the remainder as its result.

+       additive operator (also used for 
        String concatenation)
-       subtraction operator
*       multiplication operator
/       division operator
%       remainder operator

The following program, ArithmeticDemo, tests the arithmetic operators.


class ArithmeticDemo {

    public static void main (String[] args){
         
        // result is now 3
        int result = 1 + 2;
        System.out.println(result);

        // result is now 2
        result = result - 1;
        System.out.println(result);

        // result is now 4
        result = result * 2;
        System.out.println(result);

        // result is now 2
        result = result / 2;
        System.out.println(result);

        // result is now 10
        result = result + 8;
        // result is now 3
        result = result % 7;
        System.out.println(result);
    }
}

You can also combine the arithmetic operators with the simple assignment operator to create compound assignments. For example, x+=1; and x=x+1; both increment the value of x by 1.

The + operator can also be used for concatenating (joining) two strings together, as shown in the following ConcatDemo program:


class ConcatDemo {
    public static void main(String[] args){
        String firstString = "This is";
        String secondString =
            " a concatenated string.";
        String thirdString =
            firstString+secondString;
        System.out.println(thirdString);
    }
}

By the end of this program, the variable thirdString contains "This is a concatenated string.", which gets printed to standard output.

The Unary Operators

The unary operators require only one operand; they perform various operations such as incrementing/decrementing a value by one, negating an expression, or inverting the value of a boolean.

+       Unary plus operator; indicates 
        positive value (numbers are 
        positive without this, however)
-       Unary minus operator; negates
        an expression
++      Increment operator; increments
        a value by 1
--      Decrement operator; decrements
        a value by 1
!       Logical complement operator; 
        inverts the value of a boolean

The following program, UnaryDemo, tests the unary operators:


class UnaryDemo {

    public static void main(String[] args){
        // result is now 1
        int result = +1;
        System.out.println(result);
        // result is now 0
        result--;
        System.out.println(result);
        // result is now 1 
        result++;
        System.out.println(result);
        // result is now -1
        result = -result;
        System.out.println(result);
        boolean success = false;
        // false
        System.out.println(success);
        // true
        System.out.println(!success);
    }
}

The increment/decrement operators can be applied before (prefix) or after (postfix) the operand. The code result++; and ++result; will both end in result being incremented by one. The only difference is that the prefix version (++result) evaluates to the incremented value, whereas the postfix version (result++) evaluates to the original value. If you are just performing a simple increment/decrement, it doesn't really matter which version you choose. But if you use this operator in part of a larger expression, the one that you choose may make a significant difference.

The following program, PrePostDemo, illustrates the prefix/postfix unary increment operator:


class PrePostDemo {
    public static void main(String[] args){
        int i = 3;
        i++;
        // prints 4
        System.out.println(i);
        ++i;			   
        // prints 5
        System.out.println(i);
        // prints 6
        System.out.println(++i);
        // prints 6
        System.out.println(i++);
        // prints 7
        System.out.println(i);
    }
}

Problems with the examples? Try Compiling and Running the Examples: FAQs.
Complaints? Compliments? Suggestions? Give us your feedback.

Previous page: Operators
Next page: Equality, Relational, and Conditional Operators