Spec-Zone .ru
спецификации, руководства, описания, API

6.1.2.4. Password Hashing in MySQL

MySQL lists user accounts in the user table of the mysql database. Each MySQL account can be assigned a password, although the user table does not store the cleartext version of the password, but a hash value computed from it.

MySQL uses passwords in two phases of client/server communication:

In other words, the server checks hash values during authentication when a client first attempts to connect. The server generates hash values if a connected client invokes the PASSWORD() function or uses a password-generating statement to set or change a password.

Password hashing methods in MySQL have the history described following. These changes are illustrated by changes in the result from the PASSWORD() function that computes password hash values and in the structure of the user table where passwords are stored.

The Original (Pre-4.1) Hashing Method

The original hashing method produced a 16-byte string. Such hashes look like this:

mysql> SELECT PASSWORD('mypass');+--------------------+| PASSWORD('mypass') |+--------------------+| 6f8c114b58f2ce9e   |+--------------------+

To store account passwords, the Password column of the user table was at this point 16 bytes long.

The 4.1 Hashing Method

MySQL 4.1 introduced password hashing that provides better security and reduces the risk of passwords being intercepted. There were several aspects to this change:

The changes in MySQL 4.1 took place in two stages:

Compatibility Issues Related to Hashing Methods

The widening of the Password column in MySQL 4.1 from 16 bytes to 41 bytes affects installation or upgrade operations as follows:

The 4.1 hashing method is understood only by MySQL 4.1 (and newer) servers and clients, which can result in some compatibility problems. A 4.1 or newer client can connect to a pre-4.1 server, because the client understands both the pre-4.1 and 4.1 password hashing methods. However, a pre-4.1 client that attempts to connect to a 4.1 or newer server may run into difficulties. For example, a 4.0 mysql client may fail with the following error message:

shell> mysql -h localhost -u rootClient does not support authentication protocol requestedby server; consider upgrading MySQL client

This phenomenon also occurs for attempts to use the older PHP mysql extension after upgrading to MySQL 4.1 or newer. (See Section 21.9.12, "Common Problems with MySQL and PHP".)

The following discussion describes the differences between the pre-4.1 and 4.1 hashing methods, and what you should do if you upgrade your server but need to maintain backward compatibility with pre-4.1 clients. (However, permitting connections by old clients is not recommended and should be avoided if possible.) Additional information can be found in Section C.5.2.4, "Client does not support authentication protocol". This information is of particular importance to PHP programmers migrating MySQL databases from versions older than 4.1 to 4.1 or higher.

The differences between short and long password hashes are relevant both for how the server uses passwords during authentication and for how it generates password hashes for connected clients that perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the Password column:

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later clients than for older clients. In terms of security, the gradient from least to most secure is:

The way in which the server generates password hashes for connected clients is affected by the width of the Password column and by the old_passwords system variable. A 4.1 or later server generates long hashes only if certain conditions are met: The Password column must be wide enough to hold long values and old_passwords must not be set to 1.

Those conditions apply as follows:

The purpose of the old_passwords system variable is to permit backward compatibility with pre-4.1 clients under circumstances where the server would otherwise generate long password hashes. The option does not affect authentication (4.1 and later clients can still use accounts that have long password hashes), but it does prevent creation of a long password hash in the user table as the result of a password-changing operation. Were that permitted to occur, the account could no longer be used by pre-4.1 clients. With old_passwords disabled, the following undesirable scenario is possible:

This scenario illustrates that, if you must support older pre-4.1 clients, it is problematic to run a 4.1 or newer server without old_passwords set to 1. By running the server with old_passwords=1, password-changing operations do not generate long password hashes and thus do not cause accounts to become inaccessible to older clients. (Those clients cannot inadvertently lock themselves out by changing their password and ending up with a long password hash.)

The downside of old_passwords=1 is that any passwords created or changed use short hashes, even for 4.1 or later clients. Thus, you lose the additional security provided by long password hashes. To create an account that has a long hash (for example, for use by 4.1 clients) or to change an existing account to use a long password hash, an administrator can set the session value of old_passwords set to 0 while leaving the global value set to 1:

mysql> SET @@session.old_passwords =
        0;Query OK, 0 rows affected (0.00 sec)mysql> SELECT
        @@session.old_passwords, @@global.old_passwords;+-------------------------+------------------------+| @@session.old_passwords | @@global.old_passwords |+-------------------------+------------------------+|                       0 |                      1 |+-------------------------+------------------------+1 row in set (0.00 sec)mysql> CREATE USER 'newuser'@'localhost' IDENTIFIED BY 'newpass';Query OK, 0 rows affected (0.03 sec)mysql> SET PASSWORD FOR 'existinguser'@'localhost' =
        PASSWORD('existingpass');Query OK, 0 rows affected (0.00 sec)

The following scenarios are possible in MySQL 4.1 or later. The factors are whether the Password column is short or long, and, if long, whether the server is started with old_passwords enabled or disabled.

Scenario 1: Short Password column in user table:

This scenario occurs when a pre-4.1 MySQL installation has been upgraded to 4.1 or later but mysql_upgrade has not been run to upgrade the system tables in the mysql database. (This is not a recommended configuration because it does not permit use of more secure 4.1 password hashing.)

Scenario 2: Long Password column; server started with old_passwords=1:

In this scenario, newly created accounts have short password hashes because old_passwords=1 prevents generation of long hashes. Also, if you create an account with a long hash before setting old_passwords to 1, changing the account's password while old_passwords=1 results in the account being given a short password, causing it to lose the security benefits of a longer hash.

To create a new account that has a long password hash, or to change the password of any existing account to use a long hash, first set the session value of old_passwords set to 0 while leaving the global value set to 1, as described previously.

In this scenario, the server has an up to date Password column, but is running with the default password hashing method set to generate pre-4.1 hash values. This is not a recommended configuration but may be useful during a transitional period in which pre-4.1 clients and passwords are upgraded to 4.1 or later. When that has been done, it is preferable to run the server with old_passwords=0 and secure_auth=1.

Scenario 3: Long Password column; server started with old_passwords=0:

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short password hash to become inaccessible to pre-4.1 clients. A change to such an account's password made using the PASSWORD() function or a password-generating statement results in the account being given a long password hash. From that point on, no pre-4.1 client can connect to the server using that account. The client must upgrade to 4.1 or later.

If this is a problem, you can change a password in a special way. For example, normally you use SET PASSWORD as follows to change an account password:

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

The disadvantages for each of the preceding scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, old_passwords=1 prevents accounts with short hashes from becoming inaccessible, but password-changing operations cause accounts with long hashes to revert to short hashes unless you take care to change the session value of old_passwords to 0 first.

In scenario 3, accounts with short hashes become inaccessible to pre-4.1 clients if you change their passwords without explicitly using OLD_PASSWORD().

The best way to avoid compatibility problems related to short password hashes is to not use them: