Spec-Zone .ru
спецификации, руководства, описания, API
Spec-Zone .ru
спецификации, руководства, описания, API
Библиотека разработчика Mac Разработчик
Поиск

 

Эта страница руководства для  версии 10.9 Mac OS X

Если Вы выполняете различную версию  Mac OS X, просматриваете документацию локально:

Читать страницы руководства

Страницы руководства предназначаются как справочник для людей, уже понимающих технологию.

  • Чтобы изучить, как руководство организовано или узнать о синтаксисе команды, прочитайте страницу руководства для страниц справочника (5).

  • Для получения дополнительной информации об этой технологии, ищите другую документацию в Библиотеке Разработчика Apple.

  • Для получения общей информации о записи сценариев оболочки, считайте Shell, Пишущий сценарий Учебника для начинающих.



Parse::Eyapp::Node(3)                User Contributed Perl Documentation               Parse::Eyapp::Node(3)



NAME
       Parse::Eyapp::Node - The nodes of the Syntax Trees

SYNOPSIS
         use Parse::Eyapp;
         use Parse::Eyapp::Treeregexp;

         sub TERMINAL::info {
           $_[0]{attr}
         }

         my $grammar = q{
           %right  '='     # Lowest precedence
           %left   '-' '+' # + and - have more precedence than = Disambiguate a-b-c as (a-b)-c
           %left   '*' '/' # * and / have more precedence than + Disambiguate a/b/c as (a/b)/c
           %left   NEG     # Disambiguate -a-b as (-a)-b and not as -(a-b)
           %tree           # Let us build an abstract syntax tree ...

           %%
           line:
               exp <%name EXPRESSION_LIST + ';'>
                 { $_[1] } /* list of expressions separated by ';' */
           ;

           /* The %name directive defines the name of the class to
              which the node being built belongs */
           exp:
               %name NUM
               NUM
             | %name VAR
               VAR
             | %name ASSIGN
               VAR '=' exp
             | %name PLUS
               exp '+' exp
             | %name MINUS
               exp '-' exp
             | %name TIMES
               exp '*' exp
             | %name DIV
               exp '/' exp
             | %name UMINUS
               '-' exp %prec NEG
             | '(' exp ')'
                 { $_[2] }  /* Let us simplify a bit the tree */
           ;

           %%
           sub _Error { die "Syntax error near ".($_[0]->YYCurval?$_[0]->YYCurval:"end of file")."\n" }

           sub _Lexer {
             my($parser)=shift; # The parser object

             for ($parser->YYData->{INPUT}) { # Topicalize
               m{\G\s+}gc;
               $_ eq '' and return('',undef);
               m{\G([0-9]+(?:\.[0-9]+)?)}gc and return('NUM',$1);
               m{\G([A-Za-z][A-Za-z0-9_]*)}gc and return('VAR',$1);
               m{\G(.)}gcs and return($1,$1);
             }
             return('',undef);
           }

           sub Run {
               my($self)=shift;
               $self->YYParse( yylex => \&_Lexer, yyerror => \&_Error, );
           }
         }; # end grammar

         our (@all, $uminus);

         Parse::Eyapp->new_grammar( # Create the parser package/class
           input=>$grammar,
           classname=>'Calc', # The name of the package containing the parser
           firstline=>7       # String $grammar starts at line 7 (for error diagnostics)
         );
         my $parser = Calc->new();                # Create a parser
         $parser->YYData->{INPUT} = "2*-3+b*0;--2\n"; # Set the input
         my $t = $parser->Run;                    # Parse it!
         local $Parse::Eyapp::Node::INDENT=2;
         print "Syntax Tree:",$t->str;

         # Let us transform the tree. Define the tree-regular expressions ..
         my $p = Parse::Eyapp::Treeregexp->new( STRING => q{
             { #  Example of support code
               my %Op = (PLUS=>'+', MINUS => '-', TIMES=>'*', DIV => '/');
             }
             constantfold: /TIMES|PLUS|DIV|MINUS/:bin(NUM($x), NUM($y))
               => {
                 my $op = $Op{ref($bin)};
                 $x->{attr} = eval  "$x->{attr} $op $y->{attr}";
                 $_[0] = $NUM[0];
               }
             uminus: UMINUS(NUM($x)) => { $x->{attr} = -$x->{attr}; $_[0] = $NUM }
             zero_times_whatever: TIMES(NUM($x), .) and { $x->{attr} == 0 } => { $_[0] = $NUM }
             whatever_times_zero: TIMES(., NUM($x)) and { $x->{attr} == 0 } => { $_[0] = $NUM }
           },
           OUTPUTFILE=> 'main.pm'
         );
         $p->generate(); # Create the tranformations

         $t->s($uminus); # Transform UMINUS nodes
         $t->s(@all);    # constant folding and mult. by zero

         local $Parse::Eyapp::Node::INDENT=0;
         print "\nSyntax Tree after transformations:\n",$t->str,"\n";

METHODS
       The "Parse::Eyapp::Node" objects represent the nodes of the syntax tree.  All the node classes build
       by %tree and %metatree directives inherit from "Parse::Eyapp::Node" and consequently have acces to
       the methods provided in such module.

       The examples used in this document can be found in the directory "examples/Node" accompanying the
       distribution of Parse::Eyapp.

   Parse::Eyapp::Node->new
       Nodes are usually created from a Eyapp grammar using the %tree or %metatree directives. The
       "Parse::Eyapp::Node" constructor "new" offers an alternative way to create forests.

       This class method can be used to build multiple nodes on a row.  It receives a string describing the
       tree and optionally a reference to a subroutine. Such subroutine (called the attribute handler) is in
       charge to initialize the attributes of the just created nodes.  The attribute handler is called with
       the array of references to the nodes as they appear in the string from left to right.

       "Parse::Eyapp::Node->new" returns an array of pointers to the nodes created as they appear in the
       input string from left to right.  In scalar context returns a pointer to the first of these trees.

       The following example (see file "examples/Node/28foldwithnewwithvars.pl") of a treeregexp
       transformation creates a new "NUM(TERMINAL)" node using "Parse::Eyapp::Node->new":

        my $p = Parse::Eyapp::Treeregexp->new( STRING => q{
          {
            my %Op = (PLUS=>'+', MINUS => '-', TIMES=>'*', DIV => '/');
          }
          constantfold: /TIMES|PLUS|MINUS|DIV/(NUM($x), NUM($y))
             => {
            my $op = $Op{ref($_[0])};

            my $res = Parse::Eyapp::Node->new(
              q{NUM(TERMINAL)},
              sub {
                my ($NUM, $TERMINAL) = @_;
                $TERMINAL->{attr} = eval "$x->{attr} $op $y->{attr}";
                $TERMINAL->{token} = 'NUM';
              },
            );
            $_[0] = $res;
          }
          },
        );

       The call to "Parse::Eyapp::Node->new" creates a tree "NUM(TERMINAL)" and decorates the "TERMINAL"
       leaf with attributes "attr" and "token". The "constantfold" transformation substitutes all the binary
       operation trees whose children are numbers for a "NUM(TERMINAL)" tree holding as attribute the number
       resulting of operating the two numbers.

       The input string can describe more than one tree. Different trees are separated by white spaces.
       Consider the following example (in "examples/Node/builder.pl"):

         $ cat -n builder.pl
            1  #!/usr/bin/perl -w
            2  use strict;
            3  use Parse::Eyapp::Node;
            4
            5  use Data::Dumper;
            6  $Data::Dumper::Indent = 1;
            7  $Data::Dumper::Purity = 1;
            8
            9  my $string = shift || 'ASSIGN(VAR(TERMINAL), TIMES(NUM(TERMINAL),NUM(TERMINAL)))  ';
           10  my @t = Parse::Eyapp::Node->new(
           11             $string,
           12             sub { my $i = 0; $_->{n} = $i++ for @_ }
           13          );
           14
           15  print "****************\n";
           16  print Dumper(\@t);

       When feed with input 'A(C,D) E(F)' the following forest is built:

         $ builder.pl 'A(C,D) E(F)'
         ****************
         $VAR1 = [
           bless( {
             'n' => 0,
             'children' => [
               bless( { 'n' => 1, 'children' => [] }, 'C' ),
               bless( { 'n' => 2, 'children' => [] }, 'D' )
             ]
           }, 'A' ),
           {},
           {},
           bless( {
             'n' => 3,
             'children' => [
               bless( { 'n' => 4, 'children' => [] }, 'F' )
             ]
           }, 'E' ),
           {}
         ];
         $VAR1->[1] = $VAR1->[0]{'children'}[0];
         $VAR1->[2] = $VAR1->[0]{'children'}[1];
         $VAR1->[4] = $VAR1->[3]{'children'}[0];

       Thusm, the forest @t contains 5 subtrees "A(C,D), C, D, E(F)" and "F".

   Directed Acyclic Graphs with "Parse::Eyapp::Node->hnew"
       "Parse::Eyapp" provides the method "Parse::Eyapp::Node->hnew" to build Directed Acyclic Graphs (DAGs)
       instead of trees. They are built using hashed consing, i.e. memoizing the creation of nodes.

       The method "Parse::Eyapp::Node->hnew" works very much like "Parse::Eyapp::Node->new" but if one of
       the implied trees was previously built, "hnew" returns a reference to the existing one.

       See the following debugger session where several DAGs describing type expressions are built:

         DB<2> x $a = Parse::Eyapp::Node->hnew('F(X_3(A_3(A_5(INT)), CHAR, A_5(INT)),CHAR)')
        0  F=HASH(0x85f6a20)
           'children' => ARRAY(0x85e92e4)
           |- 0  X_3=HASH(0x83f55fc)
           |     'children' => ARRAY(0x83f5608)
           |     |- 0  A_3=HASH(0x85a0488)
           |     |     'children' => ARRAY(0x859fad4)
           |     |        0  A_5=HASH(0x85e5d3c)
           |     |           'children' => ARRAY(0x83f4120)
           |     |              0  INT=HASH(0x83f5200)
           |     |                 'children' => ARRAY(0x852ccb4)
           |     |                      empty array
           |     |- 1  CHAR=HASH(0x8513564)
           |     |     'children' => ARRAY(0x852cad4)
           |     |          empty array
           |     `- 2  A_5=HASH(0x85e5d3c)
           |           -> REUSED_ADDRESS
           `- 1  CHAR=HASH(0x8513564)
                 -> REUSED_ADDRESS
         DB<3> x $a->str
        0  'F(X_3(A_3(A_5(INT)),CHAR,A_5(INT)),CHAR)'

       The second occurrence of "A_5(INT)" is labelled "REUSED_ADDRESS". The same occurs with the second
       instance  of "CHAR".

       "Parse::Eyapp::Node->hnew" can be more convenient than "new" in some compiler phases and tasks like
       detecting common subexpressions or during type checking.  See file "Types.eyp" in
       "examples/typechecking/Simple-Types-XXX.tar.gz" for a more comprehensive example.

   Expanding Directed Acyclic Graphs with "Parse::Eyapp::Node->hexpand"
       Calls to "Parse::Eyapp::Node->hexpand" have the syntax

           $z = Parse::Eyapp::Node->hexpand('CLASS', @children, \&handler)

       Creates a dag of type 'CLASS' with children @children in a way compatible with "hnew". The last
       optional argument can be a reference to a sub.  Such sub will be called after the creation of the DAG
       with a reference to the root of the DAG as single argument.  The following session with the debugger
       illustrates the use of
        "Parse::Eyapp::Node->hexpand". First we create a DAG using "hnew":

         pl@nereida:~/Lbook/code/Simple-Types/script$ perl -MParse::Eyapp::Node -wde 0
         main::(-e:1):   0
           DB<1> $x = Parse::Eyapp::Node->hnew('A(C(B),C(B))')
           DB<2> x $x
         0  A=HASH(0x850c850)
            'children' => ARRAY(0x850ca30)
               0  C=HASH(0x850c928)
                  'children' => ARRAY(0x850c9e8)
                     0  B=HASH(0x850c9a0)
                        'children' => ARRAY(0x83268c8)
                             empty array
               1  C=HASH(0x850c928)
                  -> REUSED_ADDRESS

       We obtain the "REUSED_ADDRESS" for the second child since the C(B) subtree appears twice.  Now,
       suppose we want to expand the exsting tree/DAG C(B) to "A(C(B))". We can do that using "hexpand":

           DB<3> $y = Parse::Eyapp::Node->hexpand('A', $x->child(0))
           DB<4> x $y
         0  A=HASH(0x8592558)
            'children' => ARRAY(0x832613c)
               0  C=HASH(0x850c928)
                  'children' => ARRAY(0x850c9e8)
                     0  B=HASH(0x850c9a0)
                        'children' => ARRAY(0x83268c8)
                             empty array
       We get new memory for C<$y>: C<HASH(0x8592558)> is anew address.
       Assume we want to expand the tree/DAG C<C(B)> to C<A(C(B),C(B))>.
       We can do it this way:

           DB<5> $z = Parse::Eyapp::Node->hexpand('A', $x->children)
           DB<6> x $z
         0  A=HASH(0x850c850)
            'children' => ARRAY(0x850ca30)
               0  C=HASH(0x850c928)
                  'children' => ARRAY(0x850c9e8)
                     0  B=HASH(0x850c9a0)
                        'children' => ARRAY(0x83268c8)
                             empty array
               1  C=HASH(0x850c928)
                  -> REUSED_ADDRESS

       Notice that the address c<0x850c850> for $z is the same than the address for $x.  No new memory has
       been allocated for $z.

       The following command illustrates the use of "hexpand" with a handler:

           DB<7> $z = Parse::Eyapp::Node->hexpand('A', $x->children, sub { $_[0]->{t} = "X" })
           DB<8> x $z
         0  A=HASH(0x850c850)
            'children' => ARRAY(0x850ca30)
               0  C=HASH(0x850c928)
                  'children' => ARRAY(0x850c9e8)
                     0  B=HASH(0x850c9a0)
                        'children' => ARRAY(0x83268c8)
                             empty array
               1  C=HASH(0x850c928)
                  -> REUSED_ADDRESS
            't' => 'X'

   $node->type
       Returns (or sets) the type (class) of the node.  It can be called as a subroutine when $node is not a
       "Parse::Eyapp::Node" like this:

                            Parse::Eyapp::Node::type($scalar)

       This is the case when visiting "CODE" nodes.

       The following session with the debugger illustrates how it works:

         > perl -MParse::Eyapp::Node -de0
         DB<1> @t = Parse::Eyapp::Node->new("A(B,C)") # Creates a tree
         DB<2> x map { $_->type } @t # Get the types of the three nodes
         0  'A'
         1  'B'
         2  'C'
         DB<3> x Parse::Eyapp::Node::type(sub {})
         0  'CODE'
         DB<4> x Parse::Eyapp::Node::type("hola")
         0  'Parse::Eyapp::Node::STRING'
         DB<5> x Parse::Eyapp::Node::type({ a=> 1})
         0  'HASH'
         DB<6> x Parse::Eyapp::Node::type([ a, 1 ])
         0  'ARRAY'

       As it is shown in the example it can be called as a subroutine with a (CODE/HASH/ARRAY) reference or
       an ordinary scalar.

       The words HASH, CODE, ARRAY and STRING are reserved for ordinary Perl references. Avoid naming a AST
       node with one of those words.

       To be used as a setter, be sure Parse::Eyapp::Driver is loaded:

         $ perl -MParse::Eyapp::Driver -MParse::Eyapp::Node -wde0
         main::(-e:1):   0
           DB<1> x $t = Parse::Eyapp::Node->new("A(B,C)") # Creates a tree
         0  A=HASH(0x8557bdc)
            'children' => ARRAY(0x8557c90)
               0  B=HASH(0x8557cf0)
                  'children' => ARRAY(0x8325804)
                       empty array
               1  C=HASH(0x8557c6c)
                  'children' => ARRAY(0x8557d5c)
                       empty array
           DB<2> x $t->type('FUN') # Change the type of $t to 'FUN'
         0  'FUN'
           DB<3> x $t
         0  FUN=HASH(0x8557bdc)
            'children' => ARRAY(0x8557c90)
               0  B=HASH(0x8557cf0)
                  'children' => ARRAY(0x8325804)
                       empty array
               1  C=HASH(0x8557c6c)
                  'children' => ARRAY(0x8557d5c)
                       empty array
           DB<4> x $t->isa('Parse::Eyapp::Node')
         0  1

   $node->child
       Setter-getter to modify a specific child of a node.  It is called like:

                          $node->child($i)

       Returns the child with index $i. Returns "undef" if the child does not exists.  It has two obligatory
       parameters: the node (since it is a method) and the index of the child. Sets the new value if called

                           $node->child($i, $tree)

       The method will croak if the obligatory parameters are not provided.

       In the files "examples/Node/TSwithtreetransformations2.eyp" and
       "examples/node/usetswithtreetransformations2.pl") you can find a somewhat complicated example of call
       to "child" as a setter. It is inside a transformation that swaps the children of a "PLUS" node
       (remember that the tree is a concrete tree including code since it is a translation scheme built
       under the directive %metatree):

         my $transform = Parse::Eyapp::Treeregexp->new( STRING => q{
            ........................................................

            commutative_add: PLUS($x, ., $y, .) # 1st dot correspond to '+' 2nd dot to CODE
              => { my $t = $x; $_[0]->child(0, $y); $_[0]->child(2, $t)}

            ........................................................
         }

   Child Access Through "%tree alias"
       Remember that when the "Eyapp" program runs under the "%tree alias" directive The dot and dollar
       notations can be used to generate named getter-setters to access the children:

         examples/Node$ cat -n alias_and_yyprefix.pl
            1  #!/usr/local/bin/perl
            2  use warnings;
            3  use strict;
            4  use Parse::Eyapp;
            5
            6  my $grammar = q{
            7    %prefix R::S::
            8
            9    %right  '='
           10    %left   '-' '+'
           11    %left   '*' '/'
           12    %left   NEG
           13    %tree bypass alias
           14
           15    %%
           16    line: $exp  { $_[1] }
           17    ;
           18
           19    exp:
           20        %name NUM
           21              $NUM
           22      | %name VAR
           23              $VAR
           24      | %name ASSIGN
           25              $VAR '=' $exp
           26      | %name PLUS
           27              exp.left '+' exp.right
           28      | %name MINUS
           29              exp.left '-' exp.right
           30      | %name TIMES
           31              exp.left '*' exp.right
           32      | %name DIV
           33              exp.left '/' exp.right
           34      | %no bypass UMINUS
           35              '-' $exp %prec NEG
           36      |   '(' exp ')'  { $_[2] } /* Let us simplify a bit the tree */
           37    ;
           38
           39    %%
           40
           .............................
           76  }; # end grammar
           77
           78
           79  Parse::Eyapp->new_grammar(
           80    input=>$grammar,
           81    classname=>'Alias',
           82    firstline =>7,
           83    outputfile => 'main',
           84  );
           85  my $parser = Alias->new();
           86  $parser->YYData->{INPUT} = "a = -(2*3+5-1)\n";
           87  my $t = $parser->Run;
           88  $Parse::Eyapp::Node::INDENT=0;
           89  print $t->VAR->str."\n";             # a
           90  print "***************\n";
           91  print $t->exp->exp->left->str."\n";  # 2*3+5
           92  print "***************\n";
           93  print $t->exp->exp->right->str."\n"; # 1

       Here methods with names "left" and "right" will be created inside the class "R::S" (see the use of
       the %prefix directive in line 7) to access the corresponding children associated with the two
       instances of "exp" in the right hand side of the production rule. when executed, teh former program
       produces this output:

         examples/Node$ alias_and_yyprefix.pl
         R::S::TERMINAL
         ***************
         R::S::PLUS(R::S::TIMES(R::S::NUM,R::S::NUM),R::S::NUM)
         ***************
         R::S::NUM

   $node->children
       Returns the array of children of the node. When the tree is a translation scheme the CODE references
       are also included.  See "examples/Node/TSPostfix3.eyp" for an example of use inside a Translation
       Scheme:

         examples/Node$ cat TSPostfix3.eyp
         ...................... # precedence declarations

         %metatree

         %defaultaction {
           if (@_==2) {  # NUM and VAR
             $lhs->{t} = $_[1]->{attr};
             return
           }
           if (@_==4) { # binary operations
             $lhs->{t} = "$_[1]->{t} $_[3]->{t} $_[2]->{attr}";
             return
           }
           die "Fatal Error. Unexpected input. Numargs = ".scalar(@_)."\n".Parse::Eyapp::Node->str(@_);
         }

         %%
         line: %name PROG
                exp <%name EXP + ';'>
                  { @{$lhs->{t}} = map { $_->{t}} ($_[1]->children()); }

         ;

         exp:        %name NUM NUM
                 |   %name VAR VAR
                 |   %name ASSIGN VAR '=' exp  {  $lhs->{t} = "$_[1]->{attr} $_[3]->{t} ="; }
                 |   %name PLUS   exp '+' exp
                 |   %name MINUS  exp '-' exp
                 |   %name TIMES  exp '*' exp
                 |   %name DIV    exp '/' exp
                 |   %name NEG    '-' exp %prec NEG { $_[0]->{t} = "$_[2]->{t} NEG" }
                 |   '(' exp ')' %begin { $_[2] }
         ;

         %%

         ........................

       The tree in a Translation Scheme contains the references to the "CODE" implementing the semantic
       actions.  For example,  the syntax tree built by the parser for the input "a=-b*3" in
       "TSPostfix3.eyp" is:

        PROG(EXP(
            ASSIGN(
              TERMINAL[a],
              TERMINAL[=],
              TIMES(
                NEG(TERMINAL[-], VAR(TERMINAL[b], CODE), CODE),
                TERMINAL[*],
                NUM(TERMINAL[3], CODE),
                CODE
              ) # TIMES,
              CODE
            ) # ASSIGN
          ) # EXP,
          CODE
        ) # PROG

       "$node->children" can also be used as a setter.

   $node->Children
       Returns the array of children of the node.  When dealing with a translation scheme, the
       "$node->Children" method (Notice the case difference with "$node->children", first in uppercase)
       returns the non "CODE" children of the node.  The following execution with the debugger of the
       example in "examples/Node/ts_with_ast.pl" illustrates the difference:

         examples/Node$ perl -wd ts_with_ast.pl
         main::(ts_with_ast.pl:6):       my $translationscheme = q{
         main::(ts_with_ast.pl:7):       %{

       The $translationscheme variable contains the code of a small calculator:

         %metatree

         %left   '-' '+'
         %left   '*'
         %left   NEG

         %%
         line:       %name EXP
                       $exp  { $lhs->{n} = $exp->{n} }
         ;

         exp:
                     %name PLUS
                       exp.left '+'  exp.right
                         { $lhs->{n} .= $left->{n} + $right->{n} }
                 |   %name TIMES
                       exp.left '*' exp.right
                         { $lhs->{n} = $left->{n} * $right->{n} }
                 |   %name NUM   $NUM
                         { $lhs->{n} = $NUM->{attr} }
                 |   '(' $exp ')'  %begin { $exp }
                 |   exp.left '-' exp.right
                         { $lhs->{n} = $left->{n} - $right->{n} }

                 |   '-' $exp %prec NEG
                         { $lhs->{n} = -$exp->{n} }
         ;

       We run the program with input "2+(3)" and stop it at line 88, just after the augmented AST ("CODE"
       node included) has been built:

           DB<1> c 88
         main::(ts_with_ast.pl:88):      $t->translation_scheme;

       Now, let us see the difference between the methods "children" and "Children":

           DB<2> @a = $t->children; @b = $t->Children
           DB<3> print Parse::Eyapp::Node::str($_)."\n" for @a
         PLUS(NUM(TERMINAL,CODE),TERMINAL,NUM(TERMINAL,CODE),CODE)
         CODE
           DB<4> print $_->str."\n" for @b
         PLUS(NUM(TERMINAL,CODE),TERMINAL,NUM(TERMINAL,CODE),CODE)
           DB<5>

   $node->last_child
       Return the last child of the node. When dealing with translation schemes, the last can be a "CODE"
       node.

   $node->Last_child
       The "$node->Last_child" method returns the last non CODE child of the node.  See an example:

         examples/Node$ cat -n trans_scheme_default_action.pl
            1  #!/usr/bin/perl -w
            2  use strict;
            3  use Data::Dumper;
            4  use Parse::Eyapp;
            5  use IO::Interactive qw(is_interactive);
            6
            7  my $translationscheme = q{
            8  %{
            9  # head code is available at tree construction time
           10  use Data::Dumper;
           11  our %sym; # symbol table
           12  %}
           13
           14  %prefix Calc::
           15
           16  %defaultaction {
           17     $lhs->{n} = eval " $left->{n} $_[2]->{attr} $right->{n} "
           18  }
           19
           20  %metatree
           21
           22  %right   '='
           23  %left   '-' '+'
           24  %left   '*' '/'
           25
           26  %%
           27  line:       %name EXP
           28                exp <+ ';'> /* Expressions separated by semicolons */
           29                  { $lhs->{n} = $_[1]->Last_child->{n} }
           30  ;
           31
           32  exp:
           33              %name PLUS
           34                exp.left '+' exp.right
           35          |   %name MINUS
           36                exp.left '-' exp.right
           37          |   %name TIMES
           38                exp.left '*' exp.right
           39          |   %name DIV
           40                exp.left '/' exp.right
           41          |   %name NUM
           42                $NUM
           43                  { $lhs->{n} = $NUM->{attr} }
           44          |   '(' $exp ')'  %begin { $exp }
           45          |   %name VAR
           46                $VAR
           47                  { $lhs->{n} = $sym{$VAR->{attr}}->{n} }
           48          |   %name ASSIGN
           49                $VAR '=' $exp
           50                  { $lhs->{n} = $sym{$VAR->{attr}}->{n} = $exp->{n} }
           51
           52  ;
           53
           54  %%
           55  # tail code is available at tree construction time
           ......................................................
           77  }; # end translation scheme
           78
           ......................................................

       The node associated with $_[1] in

           27  line:       %name EXP
           28                exp <+ ';'> /* Expressions separated by semicolons */
           29                  { $lhs->{n} = $_[1]->Last_child->{n} }

       is associated with the whole expression

                                      exp <+ ';'>

       and is a "Calc::_PLUS_LIST" node.  When feed with input "a=3;b=4" the children are the two
       "Calc::ASSIGN" subtrees associated with "a=3" and "b=4" and the "CODE" associated with the semantic
       action:

                   { $lhs->{n} = $_[1]->Last_child->{n} }

       Using "Last_child" we are avoiding the last "CODE" child and setting the "n"(umeric) attribute of the
       "EXP" node to the one associated with "b=4" (i.e. 4).

         examples/Node$ trans_scheme_default_action.pl
         Write a sequence of arithmetic expressions: a=3;b=4
         ***********Tree*************

         Calc::EXP(
           Calc::_PLUS_LIST(
             Calc::ASSIGN(
               Calc::TERMINAL,
               Calc::TERMINAL,
               Calc::NUM(
                 Calc::TERMINAL,
                 CODE
               ),
               CODE
             ) # Calc::ASSIGN,
             Calc::ASSIGN(
               Calc::TERMINAL,
               Calc::TERMINAL,
               Calc::NUM(
                 Calc::TERMINAL,
                 CODE
               ),
               CODE
             ) # Calc::ASSIGN
           ) # Calc::_PLUS_LIST,
           CODE
         ) # Calc::EXP
         ******Symbol table**********
         {
           'a' => { 'n' => '3' },
           'b' => { 'n' => '4' }
         }

         ************Result**********
         4

   $node->descendant
       The " descendant" method returns the descendant of a node given its coordinates.  The coordinates of
       a node $s relative to a tree $t to which it belongs is a string of numbers separated by dots like
       ".1.3.2" which denotes the child path from $t to $s, i.e.  "$s == $t->child(1)->child(3)->child(2)".

       See a session with the debugger:

          DB<7> x $t->child(0)->child(0)->child(1)->child(0)->child(2)->child(1)->str
        0  '
        BLOCK[8:4:test]^{0}(
          CONTINUE[10,10]
        )
          DB<8> x $t->descendant('.0.0.1.0.2.1')->str
        0  '
        BLOCK[8:4:test]^{0}(
          CONTINUE[10,10]

   $node->str
       The "str" method returns a string representation of the tree.  The str method traverses the syntax
       tree dumping the type of the node being visited in a string. To be specific the value returned by the
       function referenced by $CLASS_HANDLER will be dumped. The default value fo such function is to return
       the type of the node.  If the node being visited has a method "info" it will be executed and its
       result inserted between $DELIMITERs into the string. Thus, in the "SYNOPSIS" example, by adding the
       "info" method to the class "TERMINAL":

        sub TERMINAL::info {
          $_[0]{attr}
        }

       we achieve the insertion of attributes in the string being built by "str".

       The existence of some methods (like "footnote") and the values of some package variables influence
       the behavior of "str". Among the most important are:

         @PREFIXES = qw(Parse::Eyapp::Node::);                                # Prefixes to suppress
         $INDENT = 0; # -1 compact, no info, no footnotes
                      # 0 = compact, 1 = indent, 2 = indent and include Types in closing parenthesis
         $STRSEP = ',';                                # Separator between nodes, by default a comma
         $DELIMITER = '[';                         # The string returned by C<info> will be enclosed
         $FOOTNOTE_HEADER = "\n---------------------------\n";
         $FOOTNOTE_SEP = ")\n";
         $FOOTNOTE_LEFT = '^{';                               # Left delimiter for a footnote number
         $FOOTNOTE_RIGHT = '}';                              # Right delimiter for a footnote number
         $LINESEP = 4;                             # When indent=2 the enclosing parenthesis will be
                                                   # commented if more than $LINESEP apart
         $CLASS_HANDLER = sub { type($_[0]) }; # What to print to identify the node

       Footnotes and attribute info will not be inserted when $INDENT is -1. A compact representation will
       be obtained. Such representation can be feed to "new" or "hnew" to obtain a copy of the tree.  See
       the following session with the debugger:

         pl@nereida:~/LEyapp$ perl -MParse::Eyapp::Node -wde 0
         main::(-e:1):   0
           DB<1> $x = Parse::Eyapp::Node->new('A(B(C,D),D)', sub { $_->{order} = $i++ for @_; })
           DB<2> *A::info = *B::info = *C::info = *D::info = sub { shift()->{order} }
           DB<3> p $x->str
         A[0](B[1](C[2],D[3]),D[4])
           DB<4> $Parse::Eyapp::Node::INDENT=-1
           DB<5> p $x->str
         A(B(C,D),D)
           DB<6> x Parse::Eyapp::Node->hnew($x->str)
         0  A=HASH(0x8574704)
            'children' => ARRAY(0x85745d8)
               0  B=HASH(0x857468c)
                  'children' => ARRAY(0x8574608)
                     0  C=HASH(0x85745b4)
                        'children' => ARRAY(0x8509670)
                             empty array
                     1  D=HASH(0x8574638)
                        'children' => ARRAY(0x857450c)
                             empty array
               1  D=HASH(0x8574638)
                  -> REUSED_ADDRESS
         1  B=HASH(0x857468c)
            -> REUSED_ADDRESS
         2  C=HASH(0x85745b4)
            -> REUSED_ADDRESS
         3  D=HASH(0x8574638)
            -> REUSED_ADDRESS
         4  D=HASH(0x8574638)
            -> REUSED_ADDRESS

       The following list defines the $DELIMITERs you can choose for attribute representation:

                 '[' => ']', '{' => '}', '(' => ')', '<' => '>'

       If the node being visited has a method  "footnote", the string returned by the method will be
       concatenated at the end of the string as a footnote. The variables $FOOTNOTE_LEFT and $FOOTNOTE_RIGHT
       govern the displaying of footnote numbers.

       Follows an example of output using "footnotes".

        nereida:~/doc/casiano/PLBOOK/PLBOOK/code/Simple-Types/script> \
                                                 usetypes.pl prueba24.c
        PROGRAM^{0}(FUNCTION[f]^{1}(RETURNINT(TIMES(INUM(TERMINAL[2:2]),VAR(TERMINAL[a:2])))))
        ---------------------------0) --------------------------0)
        0)
        Types:
        $VAR1 = {
          'CHAR' => bless( {
            'children' => []
          }, 'CHAR' ),
          'VOID' => bless( {
            'children' => []
          }, 'VOID' ),
          'INT' => bless( {
            'children' => []
          }, 'INT' ),
          'F(X_1(INT),INT)' => bless( {
            'children' => [
              bless( {
                'children' => [
                  $VAR1->{'INT'}
                ]
              }, 'X_1' ),
              $VAR1->{'INT'}
            ]
          }, 'F' )
        };
        Symbol Table:
        $VAR1 = {
          'f' => {
            'type' => 'F(X_1(INT),INT)',
            'line' => 1
          }
        };

        ---------------------------1) --------------------------1)
        1)
        $VAR1 = {
          'a' => {
            'type' => 'INT',
            'param' => 1,
            'line' => 1
          }
        };

       The first footnote was due to a call to "PROGRAM:footnote".  The "footnote" method for the "PROGRAM"
       node was defined as:

        nereida:~/doc/casiano/PLBOOK/PLBOOK/code/Simple-Types/lib/Simple> \
                                    sed -n -e '691,696p' Types.eyp | cat -n
            1  sub PROGRAM::footnote {
            2    return "Types:\n"
            3           .Dumper($_[0]->{types}).
            4           "Symbol Table:\n"
            5           .Dumper($_[0]->{symboltable})
            6  }

       The second footnote was produced by the existence of a "FUNCTION::footnote" method:

        nereida:~/doc/casiano/PLBOOK/PLBOOK/code/Simple-Types/lib/Simple> \
                                   sed -n -e '702,704p' Types.eyp | cat -n
        1  sub FUNCTION::footnote {
        2    return Dumper($_[0]->{symboltable})
        3  }

       The source program for the example was:

            1  int f(int a) {
            2    return 2*a;
            3  }

   $node->equal
       A call  "$tree1->equal($tree2)" compare the two trees $tree1 and $tree2.  Two trees are considered
       equal if their root nodes belong to the same class, they have the same number of children and the
       children are (recursively) equal.

       In Addition to the two trees the programmer can specify pairs "attribute_key => equality_handler":

         $tree1->equal($tree2, attr1 => \&handler1, attr2 => \&handler2, ...)

       In such case the definition of equality is more restrictive: Two trees are considered equal if

        Their root nodes belong to the same class,

        They have the same number of children

        For each of the specified attributes occur that for both nodes the existence and definition of the
         key is the same

        Assuming the key exists and is defined for both nodes, the equality handlers return true for each
         of its attributes and

        The respective children are (recursively) equal.

       An attribute handler receives as arguments the values of the attributes of the two nodes being
       compared and must return true if, and only if, these two attributes are considered equal. Follows an
       example:

         examples/Node$ cat -n equal.pl
            1  #!/usr/bin/perl -w
            2  use strict;
            3  use Parse::Eyapp::Node;
            4
            5  my $string1 = shift || 'ASSIGN(VAR(TERMINAL))';
            6  my $string2 = shift || 'ASSIGN(VAR(TERMINAL))';
            7  my $t1 = Parse::Eyapp::Node->new($string1, sub { my $i = 0; $_->{n} = $i++ for @_ });
            8  my $t2 = Parse::Eyapp::Node->new($string2);
            9
           10  # Without attributes
           11  if ($t1->equal($t2)) {
           12    print "\nNot considering attributes: Equal\n";
           13  }
           14  else {
           15    print "\nNot considering attributes: Not Equal\n";
           16  }
           17
           18  # Equality with attributes
           19  if ($t1->equal($t2, n => sub { return $_[0] == $_[1] })) {
           20    print "\nConsidering attributes: Equal\n";
           21  }
           22  else {
           23    print "\nConsidering attributes: Not Equal\n";
           24  }

       When the former program is run without arguments produces the following output:

         examples/Node$ equal.pl

         Not considering attributes: Equal

         Considering attributes: Not Equal

   Using "equal" During Testing
       During the development of your compiler you add new stages to the existing ones. The consequence is
       that the AST is decorated with new attributes. Unfortunately, this implies that tests you wrote using
       "is_deeply" and comparisons against formerly correct abstract syntax trees are no longer valid.  This
       is due to the fact that "is_deeply" requires both tree structures to be equivalent in every detail
       and that our new code produces a tree with new attributes.

       Instead of "is_deeply" use the "equal" method to check for partial equivalence between abstract
       syntax trees. You can follow these steps:

        Dump the tree for the source inserting "Data::Dumper" statements

        Carefully check that the tree is really correct

        Decide which attributes will be used for comparison

        Write the code for the expected value editing the output produced by "Data::Dumper"

        Write the handlers for the attributes you decided.  Write the comparison using "equal".

       Tests using this methodology will not fail even if later code decorating the AST with new attributes
       is introduced.

       See an example that checks an abstract syntax tree produced by the simple compiler (see
       "examples/typechecking/Simple-Types-XXX.tar.gz") for a really simple source:

         Simple-Types/script$ cat prueba27.c
         int f() {
         }

       The first thing is to obtain a description of the tree, that can be done executing the compiler under
       the control of the Perl debugger, stopping just after the tree has been built and dumping the tree
       with Data::Dumper:

         pl@nereida:~/Lbook/code/Simple-Types/script$ perl -wd usetypes.pl prueba27.c
         main::(usetypes.pl:5):  my $filename = shift || die "Usage:\n$0 file.c\n";
           DB<1> c 12
         main::(usetypes.pl:12): Simple::Types::show_trees($t, $debug);
           DB<2> use Data::Dumper
           DB<3> $Data::Dumper::Purity = 1
           DB<4> p Dumper($t)
         $VAR1 = bless( {
                          ..............................................
                        }, 'PROGRAM' );
         ...............................................................

       Once we have the shape of a correct tree we can write our tests:

         examples/Node$ cat -n testequal.pl
            1  #!/usr/bin/perl -w
            2  use strict;
            3  use Parse::Eyapp::Node;
            4  use Data::Dumper;
            5  use Data::Compare;
            6
            7  my $debugging = 0;
            8
            9  my $handler = sub {
           10    print Dumper($_[0], $_[1]) if $debugging;
           11    Compare($_[0], $_[1])
           12  };
           13
           14  my $t1 = bless( {
           15                   'types' => {
           16                                'CHAR' => bless( { 'children' => [] }, 'CHAR' ),
           17                                'VOID' => bless( { 'children' => [] }, 'VOID' ),
           18                                'INT' => bless( { 'children' => [] }, 'INT' ),
           19                                'F(X_0(),INT)' => bless( {
           20                                   'children' => [
           21                                      bless( { 'children' => [] }, 'X_0' ),
           22                                      bless( { 'children' => [] }, 'INT' ) ]
           23                                 }, 'F' )
           24                              },
           25                   'symboltable' => { 'f' => { 'type' => 'F(X_0(),INT)', 'line' => 1 } },
           26                   'lines' => 2,
           27                   'children' => [
           28                                   bless( {
           29                                            'symboltable' => {},
           30                                            'fatherblock' => {},
           31                                            'children' => [],
           32                                            'depth' => 1,
           33                                            'parameters' => [],
           34                                            'function_name' => [ 'f', 1 ],
           35                                            'symboltableLabel' => {},
           36                                            'line' => 1
           37                                          }, 'FUNCTION' )
           38                                 ],
           39                   'depth' => 0,
           40                   'line' => 1
           41                 }, 'PROGRAM' );
           42  $t1->{'children'}[0]{'fatherblock'} = $t1;
           43
           44  # Tree similar to $t1 but without some attributes (line, depth, etc.)
           45  my $t2 = bless( {
           46                   'types' => {
           47                                'CHAR' => bless( { 'children' => [] }, 'CHAR' ),
           48                                'VOID' => bless( { 'children' => [] }, 'VOID' ),
           49                                'INT' => bless( { 'children' => [] }, 'INT' ),
           50                                'F(X_0(),INT)' => bless( {
           51                                   'children' => [
           52                                      bless( { 'children' => [] }, 'X_0' ),
           53                                      bless( { 'children' => [] }, 'INT' ) ]
           54                                 }, 'F' )
           55                              },
           56                   'symboltable' => { 'f' => { 'type' => 'F(X_0(),INT)', 'line' => 1 } },
           57                   'children' => [
           58                                   bless( {
           59                                            'symboltable' => {},
           60                                            'fatherblock' => {},
           61                                            'children' => [],
           62                                            'parameters' => [],
           63                                            'function_name' => [ 'f', 1 ],
           64                                          }, 'FUNCTION' )
           65                                 ],
           66                 }, 'PROGRAM' );
           67  $t2->{'children'}[0]{'fatherblock'} = $t2;
           68
           69  # Tree similar to $t1 but without some attributes (line, depth, etc.)
           70  # and without the symboltable and types attributes used in the comparison
           71  my $t3 = bless( {
           72                   'types' => {
           73                                'CHAR' => bless( { 'children' => [] }, 'CHAR' ),
           74                                'VOID' => bless( { 'children' => [] }, 'VOID' ),
           75                                'INT' => bless( { 'children' => [] }, 'INT' ),
           76                                'F(X_0(),INT)' => bless( {
           77                                   'children' => [
           78                                      bless( { 'children' => [] }, 'X_0' ),
           79                                      bless( { 'children' => [] }, 'INT' ) ]
           80                                 }, 'F' )
           81                              },
           82                   'children' => [
           83                                   bless( {
           84                                            'symboltable' => {},
           85                                            'fatherblock' => {},
           86                                            'children' => [],
           87                                            'parameters' => [],
           88                                            'function_name' => [ 'f', 1 ],
           89                                          }, 'FUNCTION' )
           90                                 ],
           91                 }, 'PROGRAM' );
           92
           93  $t3->{'children'}[0]{'fatherblock'} = $t2;
           94
           95  # Without attributes
           96  if (Parse::Eyapp::Node::equal($t1, $t2)) {
           97    print "\nNot considering attributes: Equal\n";
           98  }
           99  else {
          100    print "\nNot considering attributes: Not Equal\n";
          101  }
          102
          103  # Equality with attributes
          104  if (Parse::Eyapp::Node::equal(
          105        $t1, $t2,
          106        symboltable => $handler,
          107        types => $handler,
          108      )
          109     ) {
          110        print "\nConsidering attributes: Equal\n";
          111  }
          112  else {
          113    print "\nConsidering attributes: Not Equal\n";
          114  }
          115
          116  # Equality with attributes
          117  if (Parse::Eyapp::Node::equal(
          118        $t1, $t3,
          119        symboltable => $handler,
          120        types => $handler,
          121      )
          122     ) {
          123        print "\nConsidering attributes: Equal\n";
          124  }
          125  else {
          126    print "\nConsidering attributes: Not Equal\n";
          127  }

       The code defining tree $t1 was obtained from an output using "Data::Dumper".  The code for trees $t2
       and $t3 was written using cut-and-paste from $t1.  They have the same shape than $t1 but differ in
       their attributes. Tree $t2 shares with $t1 the attributes "symboltable" and "types" used in the
       comparison and so "equal" returns "true" when compared. Since $t3 differs from $t1 in the attributes
       "symboltable" and "types" the call to "equal" returns "false".

   $node->delete
       The "$node->delete($child)" method is used to delete the specified child of $node.  The child to
       delete can be specified using the index or a reference. It returns the deleted child.

       Throws an exception if the object can't do "children" or has no "children".  See also the delete
       method of treeregexes ("Parse::Eyapp:YATW" objects) to delete the node being visited.

       The following example moves out of a loop an assignment statement assuming is an invariant of the
       loop. To do it, it uses the "delete" and "insert_before" methods:

         nereida:~/src/perl/YappWithDefaultAction/examples> \
                     sed -ne '98,113p' moveinvariantoutofloopcomplexformula.pl
         my $p = Parse::Eyapp::Treeregexp->new( STRING => q{
           moveinvariant: BLOCK(
                            @prests,
                            WHILE(VAR($b), BLOCK(@a, ASSIGN($x, NUM($e)), @c)),
                            @possts
                          )
             => {
                  my $assign = $ASSIGN;
                  $BLOCK[1]->delete($ASSIGN);
                  $BLOCK[0]->insert_before($WHILE, $assign);
                }
           },
           FIRSTLINE => 99,
         );
         $p->generate();
         $moveinvariant->s($t);

       The example below deletes CODE nodes from the tree build for a translation scheme:

         my $transform = Parse::Eyapp::Treeregexp->new(
           STRING=>q{
             delete_code: CODE => { Parse::Eyapp::Node::delete($CODE) }
           },
         )

       Observe how delete is called as a subroutine.

   $node->unshift($newchild)
       Inserts $newchild at the beginning of the list of children of $node.  See also the unshift method for
       "Parse::Eyapp:YATW" treeregexp transformation objects

   $node->push($newchild)
       Inserts $newchild at the end of the list of children of $node.

   $node->insert_before($position, $new_child)
       Inserts $newchild before $position in the list of children of $node.  Variable $position can be an
       index or a reference.

       The method throws an exception if $position is an index and is not in range. Also if $node has no
       children.

       The method throws a warning if $position is a reference and does not define an actual child. In such
       case $new_child is not inserted.

       See also the insert_before method for "Parse::Eyapp:YATW" treeregexp transformation objects

   $node->insert_after($position, $new_child)
       Inserts $newchild after $position in the list of children of $node.  Variable $position can be an
       index or a reference.

       The method throws an exception if $position is an index and is not in the range of "$node-"children>.

       The method throws a warning if $position is a reference and does not exists in the list of children.
       In such case $new_child is not inserted.

   $node->translation_scheme
       Traverses $node. Each time a CODE node is visited the subroutine referenced is called with arguments
       the node and its children. Usually the code will decorate the nodes with new attributes or will
       update existing ones. Obviously this method does nothing for an ordinary AST. It is used after
       compiling an Eyapp program that makes use of the %metatree directive. (See
       "examples/Node/TSPostfix3.eyp" for an example).

   $node->bud(@transformations)
       Bottom-up decorator. The tree is traversed bottom-up. The set of transformations in @transformations
       is applied to each node in the tree referenced by $node in the order supplied by the user. As soon as
       one succeeds no more transformations are applied.

       For an example  see the files "lib/Simple/Types.eyp" and "lib/Simple/Trans.trg" in
       "examples/typechecking/Simple-Types-XXX.tar.gz" shows an extract of the type-checking phase of a toy-example toyexample
       example compiler:

         examples/typechecking/Simple-Types-0.4/lib/Simple$  sed -ne '600,613p' Types.eyp
          my @typecheck = (     # Check typing transformations for
            our $inum,          # - Numerical constantss
            our $charconstant,  # - Character constants
            our $bin,           # - Binary Operations
            our $arrays,        # - Arrays
            our $assign,        # - Assignments
            our $control,       # - Flow control sentences
            our $functioncall,  # - Function calls
            our $statements,    # - Those nodes with void type
                                #   (STATEMENTS, PROGRAM, etc.)
            our $returntype,    # - Return
          );

          $t->bud(@typecheck);

       You can find another example of use of "bud" in the file
       "examples/ParsingStringsAndTrees/infix2pir.pl"

Parse::Eyapp:YATW  Methods
       "Parse::Eyapp:YATW" objects represent tree transformations.  They carry the information of what nodes
       match and how to modify them.

   Parse::Eyapp::YATW->new
       Builds a treeregexp transformation object.  Though usually you build a transformation by means of
       Treeregexp programs you can directly invoke the method to build a tree transformation.  A
       transformation object can be built from a function that conforms to the YATW tree transformation call
       protocol (see the section "The YATW Tree Transformation Call Protocol").  Follows an example (file
       "examples/12ts_simplify_with_s.pl"):

        nereida:~/src/perl/YappWithDefaultAction/examples> \
               sed -ne '68,$p' 12ts_simplify_with_s.pl | cat -n
         1  sub is_code {
         2    my $self = shift; # tree
         3
         4    # After the shift $_[0] is the father, $_[1] the index
         5    if ((ref($self) eq 'CODE')) {
         6      splice(@{$_[0]->{children}}, $_[1], 1);
         7      return 1;
         8    }
         9    return 0;
        10  }
        11
        12  Parse::Eyapp->new_grammar(
        13    input=>$translationscheme,
        14    classname=>'Calc',
        15    firstline =>7,
        16  );
        17  my $parser = Calc->new();                # Create the parser
        18
        19  $parser->YYData->{INPUT} = "2*-3\n";  print "2*-3\n"; # Set the input
        20  my $t = $parser->Run;                    # Parse it
        21  print $t->str."\n";
        22  my $p = Parse::Eyapp::YATW->new(PATTERN => \&is_code);
        23  $p->s($t);
        24  { no warnings; # make attr info available only for this display
        25    local *TERMINAL::info = sub { $_[0]{attr} };
        26    print $t->str."\n";
        27  }

       After the "Parse::Eyapp::YATW" object $p is built at line 22 the call to method "$p->s($t)" applies
       the transformation "is_code" using a bottom-up traversing of the tree $t.  The achieved effect is the
       elimination of "CODE" references in the translation scheme tree.  When executed the former code
       produces:

        nereida:~/src/perl/YappWithDefaultAction/examples> 12ts_simplify_with_s.pl
        2*-3
        EXP(TIMES(NUM(TERMINAL,CODE),TERMINAL,UMINUS(TERMINAL,NUM(TERMINAL,CODE),CODE),CODE),CODE)
        EXP(TIMES(NUM(TERMINAL[2]),TERMINAL[*],UMINUS(TERMINAL[-],NUM(TERMINAL[3]))))

       The file "foldrule6.pl" in the "examples/" distribution directory gives you another example:

        nereida:~/src/perl/YappWithDefaultAction/examples> cat -n foldrule6.pl
          1  #!/usr/bin/perl -w
          2  use strict;
          3  use Rule6;
          4  use Parse::Eyapp::YATW;
          5
          6  my %BinaryOperation = (PLUS=>'+', MINUS => '-', TIMES=>'*', DIV => '/');
          7
          8  sub set_terminfo {
          9    no warnings;
         10    *TERMINAL::info = sub { $_[0]{attr} };
         11  }
         12  sub is_foldable {
         13    my ($op, $left, $right);
         14    return 0 unless defined($op = $BinaryOperation{ref($_[0])});
         15    return 0 unless ($left = $_[0]->child(0), $left->isa('NUM'));
         16    return 0 unless ($right = $_[0]->child(1), $right->isa('NUM'));
         17
         18    my $leftnum = $left->child(0)->{attr};
         19    my $rightnum = $right->child(0)->{attr};
         20    $left->child(0)->{attr} = eval "$leftnum $op $rightnum";
         21    $_[0] = $left;
         22  }
         23
         24  my $parser = new Rule6();
         25  $parser->YYData->{INPUT} = "2*3";
         26  my $t = $parser->Run;
         27  &set_terminfo;
         28  print "\n***** Before ******\n";
         29  print $t->str;
         30  my $p = Parse::Eyapp::YATW->new(PATTERN => \&is_foldable);
         31  $p->s($t);
         32  print "\n***** After ******\n";
         33  print $t->str."\n";

       when executed produces:

        nereida:~/src/perl/YappWithDefaultAction/examples> foldrule6.pl

        ***** Before ******
        TIMES(NUM(TERMINAL[2]),NUM(TERMINAL[3]))
        ***** After ******
        NUM(TERMINAL[6])

   The YATW Tree Transformation Call Protocol
       For a subroutine  "pattern_sub" to work as a YATW tree transformation - as subroutines "is_foldable"
       and  "is_code" above - has to conform to the following call description:

         pattern_sub(
             $_[0],  # Node being visited
             $_[1],  # Father of this node
             $index, # Index of this node in @Father->children
             $self,  # The YATW pattern object
         );

       The "pattern_sub" must return TRUE if matched and FALSE otherwise.

       The protocol may change in the near future.  Avoid using other information than the fact that the
       first argument is the node being visited.

   Parse::Eyapp::YATW->buildpatterns
       Works as "Parse::Eyapp->new" but receives an array of subs conforming to the YATW Tree Transformation
       Call Protocol.

         our @all = Parse::Eyapp::YATW->buildpatt(\&delete_code, \&delete_tokens);

   $yatw->delete
       The root of the tree that is currently matched by the YATW transformation $yatw will be deleted from
       the tree as soon as is safe. That usually means when the processing of their siblings is finished.
       The following example (taken from file "examples/13ts_simplify_with_delete.pl" in the Parse::Eyapp
       distribution) illustrates how to eliminate CODE and syntactic terminals from the syntax tree:

        pl@nereida:~/src/perl/YappWithDefaultAction/examples$ \
               sed -ne '62,$p' 13ts_simplify_with_delete.pl | cat -n
         1  sub not_useful {
         2    my $self = shift; # node
         3    my $pat = $_[2];  # get the YATW object
         4
         5    (ref($self) eq 'CODE') or ((ref($self) eq 'TERMINAL') and ($self->{token} eq $self->{attr}))
         6      or do { return 0 };
         7    $pat->delete();
         8    return 1;
         9  }
        10
        11  Parse::Eyapp->new_grammar(
        12    input=>$translationscheme,
        13    classname=>'Calc',
        14    firstline =>7,
        15  );
        16  my $parser = Calc->new();                # Create the parser
        17
        18  $parser->YYData->{INPUT} = "2*3\n"; print $parser->YYData->{INPUT};
        19  my $t = $parser->Run;                    # Parse it
        20  print $t->str."\n";                      # Show the tree
        21  my $p = Parse::Eyapp::YATW->new(PATTERN => \&not_useful);
        22  $p->s($t);                               # Delete nodes
        23  print $t->str."\n";                      # Show the tree

       when executed we get the following output:

        pl@nereida:~/src/perl/YappWithDefaultAction/examples$ 13ts_simplify_with_delete.pl
        2*3
        EXP(TIMES(NUM(TERMINAL[2],CODE),TERMINAL[*],NUM(TERMINAL[3],CODE),CODE))
        EXP(TIMES(NUM(TERMINAL[2]),NUM(TERMINAL[3])))

   $yatw->unshift
       The call "$yatw->unshift($b)" safely unshifts (inserts at the beginning) the node $b in the list of
       its siblings of the node that matched (i.e in the list of siblings of $_[0]).  The following example
       shows a YATW transformation "insert_child" that illustrates the use of "unshift" (file
       "examples/26delete_with_trreereg.pl"):

        pl@nereida:~/src/perl/YappWithDefaultAction/examples$ \
                sed -ne '70,$p' 26delete_with_trreereg.pl | cat -n
         1  my $transform = Parse::Eyapp::Treeregexp->new( STRING => q{
         2
         3      delete_code : CODE => { $delete_code->delete() }
         4
         5      {
         6        sub not_semantic {
         7          my $self = shift;
         8          return  1 if ((ref($self) eq 'TERMINAL') and ($self->{token} eq $self->{attr}));
         9          return 0;
        10        }
        11      }
        12
        13      delete_tokens : TERMINAL and { not_semantic($TERMINAL) } => {
        14        $delete_tokens->delete();
        15      }
        16
        17      insert_child : TIMES(NUM(TERMINAL), NUM(TERMINAL)) => {
        18        my $b = Parse::Eyapp::Node->new( 'UMINUS(TERMINAL)',
        19          sub { $_[1]->{attr} = '4.5' }); # The new node will be a sibling of TIMES
        20
        21        $insert_child->unshift($b);
        22      }
        23    },
        24  )->generate();
        25
        26  Parse::Eyapp->new_grammar(
        27    input=>$translationscheme,
        28    classname=>'Calc',
        29    firstline =>7,
        30  );
        31  my $parser = Calc->new();                # Create the parser
        32
        33  $parser->YYData->{INPUT} = "2*3\n"; print $parser->YYData->{INPUT}; # Set the input
        34  my $t = $parser->Run;                # Parse it
        35  print $t->str."\n";                        # Show the tree
        36  # Get the AST
        37  our ($delete_tokens, $delete_code);
        38  $t->s($delete_tokens, $delete_code);
        39  print $t->str."\n";                        # Show the tree
        40  our $insert_child;
        41  $insert_child->s($t);
        42  print $t->str."\n";                        # Show the tree

       When is executed the program produces the following output:

        pl@nereida:~/src/perl/YappWithDefaultAction/examples$ 26delete_with_trreereg.pl
        2*3
        EXP(TIMES(NUM(TERMINAL[2],CODE),TERMINAL[*],NUM(TERMINAL[3],CODE),CODE))
        EXP(TIMES(NUM(TERMINAL[2]),NUM(TERMINAL[3])))
        EXP(UMINUS(TERMINAL[4.5]),TIMES(NUM(TERMINAL[2]),NUM(TERMINAL[3])))

       Don't try to take advantage that the transformation sub receives in $_[1] a reference to the father
       (see the section "The YATW Tree Transformation Call Protocol") and do something like:

         unshift $_[1]->{children}, $b

       it is unsafe.

   $yatw->insert_before
       A call to "$yatw->insert_before($node)" safely inserts $node in the list of siblings of $_[0] just
       before $_[0] (i.e. the node that matched with $yatw).  The following example (see file
       "examples/YATW/moveinvariantoutofloopcomplexformula.pl") illustrates its use:

         my $p = Parse::Eyapp::Treeregexp->new( STRING => q{
           moveinvariant: WHILE(VAR($b), BLOCK(@a, ASSIGN($x, $e), @c))
                and { is_invariant($ASSIGN, $WHILE) } => {
                  my $assign = $ASSIGN;
                  $BLOCK->delete($ASSIGN);
                  $moveinvariant->insert_before($assign);
                }
           },
         );

       Here the "ASSIGN($x, $e)" subtree - if is loop invariant - will be moved to the list of siblings of
       $WHILE just before the $WHILE.  Thus a program like

         "a =1000; c = 1; while (a) { c = c*a; b = 5; a = a-1 }\n"

       is transformed in s.t. like:

         "a =1000; c = 1; b = 5; while (a) { c = c*a; a = a-1 }\n"

TREE MATCHING AND TREE SUBSTITUTION
       See the documentation in Parse::Eyapp::treematchingtut

SEE ALSO
          The project home is at http://code.google.com/p/parse-eyapp/ <http://code .google.com/p/parse-
           eyapp/>.  Use a subversion client to anonymously check out the latest project source code:

              svn checkout http://parse-eyapp.googlecode.com/svn/trunk/ parse-eyapp-read-only

          The tutorial Parsing Strings and Trees with "Parse::Eyapp" (An Introduction to Compiler
           Construction in seven pages) in <http://nereida.deioc.ull.es/~pl/eyapsimple/>

          Parse::Eyapp, Parse::Eyapp::eyapplanguageref, Parse::Eyapp::debuggingtut,
           Parse::Eyapp::defaultactionsintro, Parse::Eyapp::translationschemestut, Parse::Eyapp::Driver,
           Parse::Eyapp::Node, Parse::Eyapp::YATW, Parse::Eyapp::Treeregexp, Parse::Eyapp::Scope,
           Parse::Eyapp::Base, Parse::Eyapp::datagenerationtut

          The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/languageintro.pdf>

          The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/debuggingtut.pdf>

          The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/eyapplanguageref.pdf>

          The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/Treeregexp.pdf>

          The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/Node.pdf>

          The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/YATW.pdf>

          The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/Eyapp.pdf>

          The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/Base.pdf>

          The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/translationschemestut.pdf>

          The pdf file in <http://nereida.deioc.ull.es/~pl/perlexamples/treematchingtut.pdf>

          perldoc eyapp,

          perldoc treereg,

          perldoc vgg,

          The Syntax Highlight file for vim at <http://www.vim.org/scripts/script.php?script_id=2453> and
           <http://nereida.deioc.ull.es/~vim/>

          Analisis Lexico y Sintactico, (Notes for a course in compiler construction) by  Casiano
           Rodriguez-Leon.  Available at  <http://nereida.deioc.ull.es/~pl/perlexamples/> Is the more
           complete and reliable source for Parse::Eyapp. However is in Spanish.

          Parse::Yapp,

          Man pages of yacc(1) and bison(1), <http://www.delorie.com/gnu/docs/bison/bison.html>

          Language::AttributeGrammar

          Parse::RecDescent.

          HOP::Parser

          HOP::Lexer

          ocamlyacc tutorial at
           http://plus.kaist.ac.kr/~shoh/ocaml/ocamllex-ocamlyacc/ocamlyacc-tutorial/ocamlyacc-tutorial.html
           <http://plus .kaist.ac.kr / ~ shoh/ocaml/ocamllex-ocamlyacc/ocamlyacc-tutorial/ocamlyacc-
           tutorial.html>

REFERENCES
          The classic Dragon's book Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi
           Sethi and Jeffrey D. Ullman (Addison-Wesley 1986)

          CS2121: The Implementation and Power of Programming Languages (See
           <http://www.cs.man.ac.uk/~pjj>, <http://www.cs.man.ac.uk/~pjj/complang/g2lr.html> and
           <http://www.cs.man.ac.uk/~pjj/cs2121/ho/ho.html>) by Pete Jinks

CONTRIBUTORS
        Hal Finkel <http://www.halssoftware.com/>

        G. Williams <http://kasei.us/>

        Thomas L. Shinnick <http://search.cpan.org/~tshinnic/>

        Frank Leray

AUTHOR
       Casiano Rodriguez-Leon (casiano@ull.es)

ACKNOWLEDGMENTS
       This work has been supported by CEE (FEDER) and the Spanish Ministry of Educacion y Ciencia through
       Plan Nacional I+D+I number TIN2005-08818-C04-04 (ULL::OPLINK project <http://www.oplink.ull.es/>).
       Support from Gobierno de Canarias was through GC02210601 (Grupos Consolidados).  The University of La
       Laguna has also supported my work in many ways and for many years.

       A large percentage of  code is verbatim taken from Parse::Yapp 1.05.  The author of Parse::Yapp is
       Francois Desarmenien.

       I wish to thank Francois Desarmenien for his Parse::Yapp module, to my students at La Laguna and to
       the Perl Community. Thanks to the people who have contributed to improve the module (see
       "CONTRIBUTORS" in Parse::Eyapp).  Thanks to Larry Wall for giving us Perl.  Special thanks to Juana.

LICENCE AND COPYRIGHT
       Copyright (c) 2006-2008 Casiano Rodriguez-Leon (casiano@ull.es). All rights reserved.

       Parse::Yapp copyright is of Francois Desarmenien, all rights reserved. 1998-2001

       These modules are free software; you can redistribute it and/or modify it under the same terms as
       Perl itself. See perlartistic.

       This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
       even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.



perl v5.12.5                                     2011-02-16                            Parse::Eyapp::Node(3)

Сообщение о проблемах

Способ сообщить о проблеме с этой страницей руководства зависит от типа проблемы:

Ошибки содержания
Ошибки отчета в содержании этой документации к проекту Perl. (См. perlbug (1) для инструкций представления.)
Отчеты об ошибках
Сообщите об ошибках в функциональности описанного инструмента или API к Apple через Генератор отчетов Ошибки и к проекту Perl, использующему perlbug (1).
Форматирование проблем
Отчет, форматирующий ошибки в интерактивной версии этих страниц со ссылками на отзыв ниже.