Spec-Zone .ru
спецификации, руководства, описания, API
Spec-Zone .ru
спецификации, руководства, описания, API
Библиотека разработчика Mac Разработчик
Поиск

 

Эта страница руководства является частью версии 5.0 Инструментов XCode

Получить эти инструменты:

Если Вы выполняете версию Инструментов XCode кроме 5,0, просматриваете документацию локально:

Читать страницы руководства

Страницы руководства предназначаются как справочник для людей, уже понимающих технологию.

  • Чтобы изучить, как руководство организовано или узнать о синтаксисе команды, прочитайте страницу руководства для страниц справочника (5).

  • Для получения дополнительной информации об этой технологии, ищите другую документацию в Библиотеке Разработчика Apple.

  • Для получения общей информации о записи сценариев оболочки, считайте Shell, Пишущий сценарий Учебника для начинающих.




FLOAT(3)                 BSD Library Functions Manual                 FLOAT(3)

NAME
     float -- description of floating-point types available on OS X and iOS

DESCRIPTION
     This page describes the available C floating-point types.  For a list of math library functions that
     operate on these types, see the page on the math library, "man math".

TERMINOLOGY
     Floating point numbers are represented in three parts: a sign, a mantissa (or significand), and an
     exponent.  Given such a representation with sign s, mantissa m, and exponent e, the corresponding
     numerical value is s*m*2**e.

     Floating-point types differ in the number of bits of accuracy in the mantissa (called the precision),
     and set of available exponents (the exponent range).

     Floating-point numbers with the maximum available exponent are reserved operands, denoting an infinity
     if the significand is precisely zero, and a Not-a-Number, or NaN, otherwise.

     Floating-point numbers with the minimum available exponent are either zero if the significand is pre-cisely precisely
     cisely zero, and denormal otherwise.  Note that zero is signed: +0 and -0 are distinct floating point
     numbers.

     Floating-point numbers with exponents other than the maximum and minimum available are called normal
     numbers.

PROPERTIES OF IEEE-754 FLOATING-POINT
     Basic arithmetic operations in IEEE-754 floating-point are correctly rounded: this means that the
     result delivered is the same as the result that would be achieved by computing the exact real-number
     operation on the operands, then rounding the real-number result to a floating-point value.

     Overflow occurs when the value of the exact result is too large in magnitude to be represented in the
     floating-point type in which the computation is being performed; doing so would require an exponent
     outside of the exponent range of the type.  By default, computations that result in overflow return a
     signed infinity.

     Underflow occurs when the value of the exact result is too small in magnitude to be represented as a
     normal number in the floating-point type in which the computation is being performed.  By default,
     underflow is gradual, and produces a denormal number or a zero.

     All floating-points number of a given type are integer multiples of the smallest non-zero floating-point floatingpoint
     point number of that type; however, the converse is not true.  This means that, in the default mode,
     (x-y) = 0 only if x = y.

     The sign of zero transforms correctly through multiplication and division, and is preserved by addition
     of zeros with like signs, but x - x yields +0 for every finite floating-point number x.  The only oper-ations operations
     ations that reveal the sign of a zero are x/(+-0) and copysign(x,+-0).  In particular, comparisons (x >
     y, x != y, etc) are not affected by the sign of zero.

     The sign of infinity transforms correctly through multiplication and division, and infinities are unaf-fected unaffected
     fected by addition or subtraction of any finite floating-point number.  But Inf-Inf, Inf*0, and Inf/Inf
     are, like 0/0 or sqrt(-3), invalid operations that produce NaN.

     NaNs are the default results of invalid operations, and they propagate through subsequent arithmetic
     operations.  If x is a NaN, then x != x is TRUE, and every other comparison predicate (x > y, x = y, x
     <= y, etc) evaluates to FALSE, regardless of the value of y.  Additionally, predicates that entail an
     ordered comparison (rather than mere equality or inequality) signal Invalid Operation when one of the
     arguments is NaN.

     IEEE-754 provides five kinds of floating-point exceptions, listed below:

     Exception              Default Result
     __________________________________________
     Invalid Operation      NaN or FALSE
     Overflow               +-Infinity
     Divide by Zero         +-Infinity
     Underflow              Gradual Underflow
     Inexact                Rounded Value

     NOTE: An exception is not an error unless it is handled incorrectly.  What makes a class of exceptions
     exceptional is that no single default response can be satisfactory in every instance.  On the other
     hand, because a default response will serve most instances of the exception satisfactorily, simply
     aborting the computation cannot be justified.

     For each kind of floating-point exception, IEEE-754 provides a flag that is raised each time its excep-
     tion is signaled, and remains raised until the program resets it.  Programs may test, save, and restore
     the flags, or a subset thereof.

PRECISION AND EXPONENT RANGE OF SPECIFIC FLOATING-POINT TYPES
     On both OS X and iOS, the type float corresponds to IEEE-754 single precision.  A single-precision num-ber number
     ber is represented in 32 bits, and has a precision of 24 significant bits, roughly like 7 significant
     decimal digits.  8 bits are used to encode the exponent, which gives an exponent range from -126 to
     127, inclusive.

     The header <float.h> defines several useful constants for the float type:
     FLT_MANT_DIG - The number of binary digits in the significand of a float.
     FLT_MIN_EXP - One more than the smallest exponent available in the float type.
     FLT_MAX_EXP - One more than the largest exponent available in the float type.
     FLT_DIG - the precision in decimal digits of a float.  A decimal value with this many digits, stored as
     a float, always yields the same value up to this many digits when converted back to decimal notation.
     FLT_MIN_1__EXP - the smallest n such that 10**n is a non-zero normal number as a float.
     FLT_MAX_1__EXP - the largest n such that 10**n is finite as a float.
     FLT_MIN - the smallest positive normal float.
     FLT_MAX - the largest finite float.
     FLT_EPSILON - the difference between 1.0 and the smallest float bigger than 1.0.

     On both OS X and iOS, the type double corresponds to IEEE-754 double precision.  A double-precision
     number is represented in 64 bits, and has a precision of 53 significant bits, roughly like 16 signifi-cant significant
     cant decimal digits.  11 bits are used to encode the exponent, which gives an exponent range from -1022
     to 1023, inclusive.

     The header <float.h> defines several useful constants for the double type:
     DBL_MANT_DIG - The number of binary digits in the significand of a double.
     DBL_MIN_EXP - One more than the smallest exponent available in the double type.
     DBL_MAX_EXP - One more than the exponent available in the double type.
     DBL_DIG - the precision in decimal digits of a double.  A decimal value with this many digits, stored
     as a double, always yields the same value up to this many digits when converted back to decimal nota-tion. notation.
     tion.
     DBL_MIN_1__EXP - the smallest n such that 10**n is a non-zero normal number as a double.
     DBL_MAX_1__EXP - the largest n such that 10**n is finite as a double.
     DBL_MIN - the smallest positive normal double.
     DBL_MAX - the largest finite double.
     DBL_EPSILON - the difference between 1.0 and the smallest double bigger than 1.0.

     On Intel macs, the type long double corresponds to IEEE-754 double extended precision.  A double
     extended number is represented in 80 bits, and has a precision of 64 significant bits, roughly like 19
     significant decimal digits.  15 bits are used to encode the exponent, which gives an exponent range
     from -16383 to 16384, inclusive.

     The header <float.h> defines several useful constants for the long double type:
     LDBL_MANT_DIG - The number of binary digits in the significand of a long double.
     LDBL_MIN_EXP - One more than the smallest exponent available in the long double type.
     LDBL_MAX_EXP - One more than the exponent available in the long double type.
     LDBL_DIG - the precision in decimal digits of a long double.  A decimal value with this many digits,
     stored as a long double, always yields the same value up to this many digits when converted back to
     decimal notation.
     LDBL_MIN_1__EXP - the smallest n such that 10**n is a non-zero normal number as a long double.
     LDBL_MAX_1__EXP - the largest n such that 10**n is finite as a long double.
     LDBL_MIN - the smallest positive normal long double.
     LDBL_MAX - the largest finite long double.
     LDBL_EPSILON - the difference between 1.0 and the smallest long double bigger than 1.0.

     On ARM iOS devices, the type long double corresponds to IEEE-754 double precision.  Thus, the values of
     the LDBL_* macros are identical to those of the corresponding DBL_* macros.

SEE ALSO
     math(3), complex(3)

STANDARDS
     Floating-point arithmetic conforms to the ISO/IEC 9899:2011 standard.

BSD                             March 28, 2007                             BSD

Сообщение о проблемах

Способ сообщить о проблеме с этой страницей руководства зависит от типа проблемы:

Ошибки содержания
Ошибки отчета в содержании этой документации со ссылками на отзыв ниже.
Отчеты об ошибках
Сообщите об ошибках в функциональности описанного инструмента или API через Генератор отчетов Ошибки.
Форматирование проблем
Отчет, форматирующий ошибки в интерактивной версии этих страниц со ссылками на отзыв ниже.