Spec-Zone .ru
спецификации, руководства, описания, API
Spec-Zone .ru
спецификации, руководства, описания, API
Библиотека разработчика Mac Разработчик
Поиск

 

Эта страница руководства для  версии 10.9 Mac OS X

Если Вы выполняете различную версию  Mac OS X, просматриваете документацию локально:

Читать страницы руководства

Страницы руководства предназначаются как справочник для людей, уже понимающих технологию.

  • Чтобы изучить, как руководство организовано или узнать о синтаксисе команды, прочитайте страницу руководства для страниц справочника (5).

  • Для получения дополнительной информации об этой технологии, ищите другую документацию в Библиотеке Разработчика Apple.

  • Для получения общей информации о записи сценариев оболочки, считайте Shell, Пишущий сценарий Учебника для начинающих.



math::linearalgebra(n)                        Tcl Math Library                        math::linearalgebra(n)



____________________________________________________________________________________________________________

NAME
       math::linearalgebra - Linear Algebra

SYNOPSIS
       package require Tcl  ?8.4?

       package require math::linearalgebra  ?1.1?

       ::math::linearalgebra::mkVector ndim value

       ::math::linearalgebra::mkUnitVector ndim ndir

       ::math::linearalgebra::mkMatrix nrows ncols value

       ::math::linearalgebra::getrow matrix row ?imin? ?imax?

       ::math::linearalgebra::setrow matrix row newvalues ?imin? ?imax?

       ::math::linearalgebra::getcol matrix col ?imin? ?imax?

       ::math::linearalgebra::setcol matrix col newvalues ?imin? ?imax?

       ::math::linearalgebra::getelem matrix row col

       ::math::linearalgebra::setelem matrix row ?col? newvalue

       ::math::linearalgebra::swaprows matrix irow1 irow2 ?imin? ?imax?

       ::math::linearalgebra::swapcols matrix icol1 icol2 ?imin? ?imax?

       ::math::linearalgebra::show obj ?format? ?rowsep? ?colsep?

       ::math::linearalgebra::dim obj

       ::math::linearalgebra::shape obj

       ::math::linearalgebra::conforming type obj1 obj2

       ::math::linearalgebra::symmetric matrix ?eps?

       ::math::linearalgebra::norm vector type

       ::math::linearalgebra::norm_one vector

       ::math::linearalgebra::norm_two vector

       ::math::linearalgebra::norm_max vector ?index?

       ::math::linearalgebra::normMatrix matrix type

       ::math::linearalgebra::dotproduct vect1 vect2

       ::math::linearalgebra::unitLengthVector vector

       ::math::linearalgebra::normalizeStat mv

       ::math::linearalgebra::axpy scale mv1 mv2

       ::math::linearalgebra::add mv1 mv2

       ::math::linearalgebra::sub mv1 mv2

       ::math::linearalgebra::scale scale mv

       ::math::linearalgebra::rotate c s vect1 vect2

       ::math::linearalgebra::transpose matrix

       ::math::linearalgebra::matmul mv1 mv2

       ::math::linearalgebra::angle vect1 vect2

       ::math::linearalgebra::crossproduct vect1 vect2

       ::math::linearalgebra::matmul mv1 mv2

       ::math::linearalgebra::mkIdentity size

       ::math::linearalgebra::mkDiagonal diag

       ::math::linearalgebra::mkRandom size

       ::math::linearalgebra::mkTriangular size ?uplo? ?value?

       ::math::linearalgebra::mkHilbert size

       ::math::linearalgebra::mkDingdong size

       ::math::linearalgebra::mkOnes size

       ::math::linearalgebra::mkMoler size

       ::math::linearalgebra::mkFrank size

       ::math::linearalgebra::mkBorder size

       ::math::linearalgebra::mkWilkinsonW+ size

       ::math::linearalgebra::mkWilkinsonW- size

       ::math::linearalgebra::solveGauss matrix bvect

       ::math::linearalgebra::solvePGauss matrix bvect

       ::math::linearalgebra::solveTriangular matrix bvect ?uplo?

       ::math::linearalgebra::solveGaussBand matrix bvect

       ::math::linearalgebra::solveTriangularBand matrix bvect

       ::math::linearalgebra::determineSVD A eps

       ::math::linearalgebra::eigenvectorsSVD A eps

       ::math::linearalgebra::leastSquaresSVD A y qmin eps

       ::math::linearalgebra::choleski matrix

       ::math::linearalgebra::orthonormalizeColumns matrix

       ::math::linearalgebra::orthonormalizeRows matrix

       ::math::linearalgebra::dger matrix alpha x y ?scope?

       ::math::linearalgebra::dgetrf matrix

       ::math::linearalgebra::det matrix

       ::math::linearalgebra::largesteigen matrix tolerance maxiter

       ::math::linearalgebra::to_LA mv

       ::math::linearalgebra::from_LA mv

____________________________________________________________________________________________________________

DESCRIPTION
       This  package  offers both low-level procedures and high-level algorithms to deal with linear algebra
       problems:

             robust solution of linear equations or least squares problems

             determining eigenvectors and eigenvalues of symmetric matrices

             various decompositions of general matrices or matrices of a specific form

             (limited) support for matrices in band storage, a common type of sparse matrices

       It arose as a re-implementation of Hume's LA package and the desire to offer low-level procedures  as
       found in the well-known BLAS library.  Matrices are implemented as lists of lists rather linear lists
       with reserved elements, as in the original LA package, as it was found that such an implementation is
       actually faster.

       It  is  advisable, however, to use the procedures that are offered, such as setrow and getrow, rather
       than rely on this representation explicitly: that way it is to switch to a possibly even faster  com-piled compiled
       piled implementation that supports the same API.

       Note:  When  using  this package in combination with Tk, there may be a naming conflict, as both this
       package and Tk define a command scale. See the NAMING CONFLICT section below.

PROCEDURES
       The package defines the following public procedures (several exist  as  specialised  procedures,  see
       below):

       Constructing matrices and vectors

       ::math::linearalgebra::mkVector ndim value
              Create a vector with ndim elements, each with the value value.

              integer ndim
                     Dimension of the vector (number of components)

              double value
                     Uniform value to be used (default: 0.0)


       ::math::linearalgebra::mkUnitVector ndim ndir
              Create a unit vector in ndim-dimensional space, along the ndir-th direction.

              integer ndim
                     Dimension of the vector (number of components)

              integer ndir
                     Direction (0, ..., ndim-1)


       ::math::linearalgebra::mkMatrix nrows ncols value
              Create a matrix with nrows rows and ncols columns. All elements have the value value.

              integer nrows
                     Number of rows

              integer ncols
                     Number of columns

              double value
                     Uniform value to be used (default: 0.0)


       ::math::linearalgebra::getrow matrix row ?imin? ?imax?
              Returns a single row of a matrix as a list

              list matrix
                     Matrix in question

              integer row
                     Index of the row to return

              integer imin
                     Minimum index of the column (default: 0)

              integer imax
                     Maximum index of the column (default: ncols-1)


       ::math::linearalgebra::setrow matrix row newvalues ?imin? ?imax?
              Set a single row of a matrix to new values (this list must have the same number of elements as
              the number of columns in the matrix)

              list matrix
                     name of the matrix in question

              integer row
                     Index of the row to update

              list newvalues
                     List of new values for the row

              integer imin
                     Minimum index of the column (default: 0)

              integer imax
                     Maximum index of the column (default: ncols-1)


       ::math::linearalgebra::getcol matrix col ?imin? ?imax?
              Returns a single column of a matrix as a list

              list matrix
                     Matrix in question

              integer col
                     Index of the column to return

              integer imin
                     Minimum index of the row (default: 0)

              integer imax
                     Maximum index of the row (default: nrows-1)


       ::math::linearalgebra::setcol matrix col newvalues ?imin? ?imax?
              Set a single column of a matrix to new values (this list must have the same number of elements
              as the number of rows in the matrix)

              list matrix
                     name of the matrix in question

              integer col
                     Index of the column to update

              list newvalues
                     List of new values for the column

              integer imin
                     Minimum index of the row (default: 0)

              integer imax
                     Maximum index of the row (default: nrows-1)


       ::math::linearalgebra::getelem matrix row col
              Returns a single element of a matrix/vector

              list matrix
                     Matrix or vector in question

              integer row
                     Row of the element

              integer col
                     Column of the element (not present for vectors)


       ::math::linearalgebra::setelem matrix row ?col? newvalue
              Set a single element of a matrix (or vector) to a new value

              list matrix
                     name of the matrix in question

              integer row
                     Row of the element

              integer col
                     Column of the element (not present for vectors)


       ::math::linearalgebra::swaprows matrix irow1 irow2 ?imin? ?imax?
              Swap two rows in a matrix completely or only a selected part

              list matrix
                     name of the matrix in question

              integer irow1
                     Index of first row

              integer irow2
                     Index of second row

              integer imin
                     Minimum column index (default: 0)

              integer imin
                     Maximum column index (default: ncols-1)


       ::math::linearalgebra::swapcols matrix icol1 icol2 ?imin? ?imax?
              Swap two columns in a matrix completely or only a selected part

              list matrix
                     name of the matrix in question

              integer irow1
                     Index of first column

              integer irow2
                     Index of second column

              integer imin
                     Minimum row index (default: 0)

              integer imin
                     Maximum row index (default: nrows-1)


       Querying matrices and vectors

       ::math::linearalgebra::show obj ?format? ?rowsep? ?colsep?
              Return  a string representing the vector or matrix, for easy printing.  (There is currently no
              way to print fixed sets of columns)

              list obj
                     Matrix or vector in question

              string format
                     Format for printing the numbers (default: %6.4f)

              string rowsep
                     String to use for separating rows (default: newline)

              string colsep
                     String to use for separating columns (default: space)


       ::math::linearalgebra::dim obj
              Returns the number of dimensions for the object (either 0 for a scalar, 1 for a vector  and  2
              for a matrix)

              any obj
                     Scalar, vector, or matrix


       ::math::linearalgebra::shape obj
              Returns  the  number  of elements in each dimension for the object (either an empty list for a
              scalar, a single number for a vector and a list of the  number  of  rows  and  columns  for  a
              matrix)

              any obj
                     Scalar, vector, or matrix


       ::math::linearalgebra::conforming type obj1 obj2
              Checks  if  two  objects  (vector  or  matrix)  have conforming shapes, that is if they can be
              applied in an operation like addition or matrix multiplication.

              string type
                     Type of check:

                           "shape" - the two objects have the same shape (for all element-wise operations)

                           "rows" - the two objects have the same number of rows (for use as A and b  in  a
                            system of linear equations Ax = b

                           "matmul" - the first object has the same number of columns as the number of rows
                            of the second object. Useful for matrix-matrix or matrix-vector  multiplication.

              list obj1
                     First vector or matrix (left operand)

              list obj2
                     Second vector or matrix (right operand)


       ::math::linearalgebra::symmetric matrix ?eps?
              Checks if the given (square) matrix is symmetric. The argument eps is the tolerance.

              list matrix
                     Matrix to be inspected

              float eps
                     Tolerance for determining approximate equality (defaults to 1.0e-8)


       Basic operations

       ::math::linearalgebra::norm vector type
              Returns the norm of the given vector. The type argument can be: 1, 2, inf or max, respectively
              the sum of absolute values, the ordinary Euclidean norm or the max norm.

              list vector
                     Vector, list of coefficients

              string type
                     Type of norm (default: 2, the Euclidean norm)

       ::math::linearalgebra::norm_one vector
              Returns the L1 norm of the given vector, the sum of absolute values

              list vector
                     Vector, list of coefficients

       ::math::linearalgebra::norm_two vector
              Returns the L2 norm of the given vector, the ordinary Euclidean norm

              list vector
                     Vector, list of coefficients

       ::math::linearalgebra::norm_max vector ?index?
              Returns the Linf norm of the given vector, the maximum absolute coefficient

              list vector
                     Vector, list of coefficients

              integer index
                     (optional) if non zero, returns a list made of the maximum value and  the  index  where
                     that maximum was found.  if zero, returns the maximum value.


       ::math::linearalgebra::normMatrix matrix type
              Returns the norm of the given matrix. The type argument can be: 1, 2, inf or max, respectively
              the sum of absolute values, the ordinary Euclidean norm or the max norm.

              list matrix
                     Matrix, list of row vectors

              string type
                     Type of norm (default: 2, the Euclidean norm)


       ::math::linearalgebra::dotproduct vect1 vect2
              Determine the inproduct or dot product of two vectors. These must have the same shape  (number
              of dimensions)

              list vect1
                     First vector, list of coefficients

              list vect2
                     Second vector, list of coefficients


       ::math::linearalgebra::unitLengthVector vector
              Return a vector in the same direction with length 1.

              list vector
                     Vector to be normalized


       ::math::linearalgebra::normalizeStat mv
              Normalize the matrix or vector in a statistical sense: the mean of the elements of the columns
              of the result is zero and the standard deviation is 1.

              list mv
                     Vector or matrix to be normalized in the above sense


       ::math::linearalgebra::axpy scale mv1 mv2
              Return a vector or matrix that results from a "daxpy" operation, that is: compute a*x+y  (a  a
              scalar and x and y both vectors or matrices of the same shape) and return the result.

              Specialised  variants  are: axpy_vect and axpy_mat (slightly faster, but no check on the argu-ments) arguments)
              ments)

              double scale
                     The scale factor for the first vector/matrix (a)

              list mv1
                     First vector or matrix (x)

              list mv2
                     Second vector or matrix (y)


       ::math::linearalgebra::add mv1 mv2
              Return a vector or matrix that is the sum of the two arguments (x+y)

              Specialised variants are: add_vect and add_mat (slightly faster, but no  check  on  the  argu-ments) arguments)
              ments)

              list mv1
                     First vector or matrix (x)

              list mv2
                     Second vector or matrix (y)


       ::math::linearalgebra::sub mv1 mv2
              Return a vector or matrix that is the difference of the two arguments (x-y)

              Specialised  variants  are:  sub_vect  and sub_mat (slightly faster, but no check on the argu-ments) arguments)
              ments)

              list mv1
                     First vector or matrix (x)

              list mv2
                     Second vector or matrix (y)


       ::math::linearalgebra::scale scale mv
              Scale a vector or matrix and return the result, that is: compute a*x.

              Specialised variants are: scale_vect and scale_mat (slightly faster, but no check on the argu-ments) arguments)
              ments)

              double scale
                     The scale factor for the vector/matrix (a)

              list mv
                     Vector or matrix (x)


       ::math::linearalgebra::rotate c s vect1 vect2
              Apply a planar rotation to two vectors and return the result as a list of two vectors: c*x-s*y
              and s*x+c*y. In algorithms you can often easily determine the cosine and sine of the angle, so
              it is more efficient to pass that information directly.

              double c
                     The cosine of the angle

              double s
                     The sine of the angle

              list vect1
                     First vector (x)

              list vect2
                     Seocnd vector (x)


       ::math::linearalgebra::transpose matrix
              Transpose a matrix

              list matrix
                     Matrix to be transposed


       ::math::linearalgebra::matmul mv1 mv2
              Multiply  a  vector/matrix with another vector/matrix. The result is a matrix, if both x and y
              are matrices or both are vectors, in which case the "outer product" is computed. If one  is  a
              vector and the other is a matrix, then the result is a vector.

              list mv1
                     First vector/matrix (x)

              list mv2
                     Second vector/matrix (y)


       ::math::linearalgebra::angle vect1 vect2
              Compute the angle between two vectors (in radians)

              list vect1
                     First vector

              list vect2
                     Second vector


       ::math::linearalgebra::crossproduct vect1 vect2
              Compute the cross product of two (three-dimensional) vectors

              list vect1
                     First vector

              list vect2
                     Second vector


       ::math::linearalgebra::matmul mv1 mv2
              Multiply  a  vector/matrix with another vector/matrix. The result is a matrix, if both x and y
              are matrices or both are vectors, in which case the "outer product" is computed. If one  is  a
              vector and the other is a matrix, then the result is a vector.

              list mv1
                     First vector/matrix (x)

              list mv2
                     Second vector/matrix (y)


       Common matrices and test matrices

       ::math::linearalgebra::mkIdentity size
              Create an identity matrix of dimension size.

              integer size
                     Dimension of the matrix


       ::math::linearalgebra::mkDiagonal diag
              Create a diagonal matrix whose diagonal elements are the elements of the vector diag.

              list diag
                     Vector whose elements are used for the diagonal


       ::math::linearalgebra::mkRandom size
              Create a square matrix whose elements are uniformly distributed random numbers between 0 and 1
              of dimension size.

              integer size
                     Dimension of the matrix


       ::math::linearalgebra::mkTriangular size ?uplo? ?value?
              Create a triangular matrix with non-zero elements in the upper or  lower  part,  depending  on
              argument uplo.

              integer size
                     Dimension of the matrix

              string uplo
                     Fill the upper (U) or lower part (L)

              double value
                     Value to fill the matrix with


       ::math::linearalgebra::mkHilbert size
              Create  a  Hilbert  matrix  of dimension size.  Hilbert matrices are very ill-conditioned with
              respect to eigenvalue/eigenvector problems. Therefore they are good candidates for testing the
              accuracy of algorithms and implementations.

              integer size
                     Dimension of the matrix


       ::math::linearalgebra::mkDingdong size
              Create  a "dingdong" matrix of dimension size.  Dingdong matrices are imprecisely represented,
              but have the property of being very stable in such algorithms as Gauss elimination.

              integer size
                     Dimension of the matrix


       ::math::linearalgebra::mkOnes size
              Create a square matrix of dimension size whose entries are all 1.

              integer size
                     Dimension of the matrix


       ::math::linearalgebra::mkMoler size
              Create a Moler matrix of size size. (Moler matrices have a very simple Choleski decomposition.
              It  has one small eigenvalue and it can easily upset elimination methods for systems of linear
              equations.)

              integer size
                     Dimension of the matrix


       ::math::linearalgebra::mkFrank size
              Create a Frank matrix of size size. (Frank matrices are fairly well-behaved matrices)

              integer size
                     Dimension of the matrix


       ::math::linearalgebra::mkBorder size
              Create a bordered matrix of size size. (Bordered matrices have a very low rank and  can  upset
              certain specialised algorithms.)

              integer size
                     Dimension of the matrix


       ::math::linearalgebra::mkWilkinsonW+ size
              Create a Wilkinson W+ of size size. This kind of matrix has pairs of eigenvalues that are very
              close together. Usually the order (size) is odd.

              integer size
                     Dimension of the matrix


       ::math::linearalgebra::mkWilkinsonW- size
              Create a Wilkinson W- of size size. This kind of matrix has pairs of eigenvalues with opposite
              signs, when the order (size) is odd.

              integer size
                     Dimension of the matrix


       Common algorithms

       ::math::linearalgebra::solveGauss matrix bvect
              Solve  a  system of linear equations (Ax=b) using Gauss elimination.  Returns the solution (x)
              as a vector or matrix of the same shape as bvect.

              list matrix
                     Square matrix (matrix A)

              list bvect
                     Vector or matrix whose columns are the individual b-vectors

       ::math::linearalgebra::solvePGauss matrix bvect
              Solve a system of linear equations (Ax=b)  using  Gauss  elimination  with  partial  pivoting.
              Returns the solution (x) as a vector or matrix of the same shape as bvect.

              list matrix
                     Square matrix (matrix A)

              list bvect
                     Vector or matrix whose columns are the individual b-vectors


       ::math::linearalgebra::solveTriangular matrix bvect ?uplo?
              Solve  a system of linear equations (Ax=b) by backward substitution. The matrix is supposed to
              be upper-triangular.

              list matrix
                     Lower or upper-triangular matrix (matrix A)

              list bvect
                     Vector or matrix whose columns are the individual b-vectors

              string uplo
                     Indicates whether the matrix is lower-triangular (L) or upper-triangular (U).  Defaults
                     to "U".

       ::math::linearalgebra::solveGaussBand matrix bvect
              Solve  a system of linear equations (Ax=b) using Gauss elimination, where the matrix is stored
              as a band matrix (cf. STORAGE).  Returns the solution (x) as a vector or matrix  of  the  same
              shape as bvect.

              list matrix
                     Square matrix (matrix A; in band form)

              list bvect
                     Vector or matrix whose columns are the individual b-vectors


       ::math::linearalgebra::solveTriangularBand matrix bvect
              Solve  a system of linear equations (Ax=b) by backward substitution. The matrix is supposed to
              be upper-triangular and stored in band form.

              list matrix
                     Upper-triangular matrix (matrix A)

              list bvect
                     Vector or matrix whose columns are the individual b-vectors


       ::math::linearalgebra::determineSVD A eps
              Determines the Singular Value Decomposition of a matrix: A = U S Vtrans.  Returns a list  with
              the matrix U, the vector of singular values S and the matrix V.

              list A Matrix to be decomposed

              float eps
                     Tolerance (defaults to 2.3e-16)


       ::math::linearalgebra::eigenvectorsSVD A eps
              Determines  the  eigenvectors and eigenvalues of a real symmetric matrix, using SVD. Returns a
              list with the matrix of normalized eigenvectors and their eigenvalues.

              list A Matrix whose eigenvalues must be determined

              float eps
                     Tolerance (defaults to 2.3e-16)


       ::math::linearalgebra::leastSquaresSVD A y qmin eps
              Determines the solution to a least-sqaures problem Ax ~ y via  singular  value  decomposition.
              The result is the vector x.

              Note  that if you add a column of 1s to the matrix, then this column will represent a constant
              like in: y = a*x1 + b*x2 + c. To force the intercept to be zero, simply leave it out.

              list A Matrix of independent variables

              list y List of observed values

              float qmin
                     Minimum singular value to be considered (defaults to 0.0)

              float eps
                     Tolerance (defaults to 2.3e-16)


       ::math::linearalgebra::choleski matrix
              Determine the Choleski decomposition of a symmetric positive semidefinite matrix (this  condi-tion condition
              tion is not checked!). The result is the lower-triangular matrix L such that L Lt = matrix.

              list matrix
                     Matrix to be decomposed


       ::math::linearalgebra::orthonormalizeColumns matrix
              Use  the  modified Gram-Schmidt method to orthogonalize and normalize the columns of the given
              matrix and return the result.

              list matrix
                     Matrix whose columns must be orthonormalized


       ::math::linearalgebra::orthonormalizeRows matrix
              Use the modified Gram-Schmidt method to orthogonalize and normalize  the  rows  of  the  given
              matrix and return the result.

              list matrix
                     Matrix whose rows must be orthonormalized


       ::math::linearalgebra::dger matrix alpha x y ?scope?
              Perform  the  rank 1 operation A + alpha*x*y' inline (that is: the matrix A is adjusted).  For
              convenience the new matrix is also returned as the result.

              list matrix
                     Matrix whose rows must be adjusted

              double alpha
                     Scale factor

              list x A column vector

              list y A column vector

              list scope
                     If not provided, the operation is performed on all rows/columns of A if provided, it is
                     expected to be the list {imin imax jmin jmax} where:

                           imin Minimum row index

                           imax Maximum row index

                           jmin Minimum column index

                           jmax Maximum column index


       ::math::linearalgebra::dgetrf matrix
              Computes  an  LU  factorization  of  a general matrix, using partial, pivoting with row inter-changes. interchanges.
              changes. Returns the permutation vector.

              The factorization has the form

                 P * A = L * U

              where P is a permutation matrix, L is lower triangular with unit diagonal elements, and  U  is
              upper triangular.  Returns the permutation vector, as a list of length n-1.  The last entry of
              the permutation is not stored, since it is implicitely known, with value n (the  last  row  is
              not  swapped  with  any other row).  At index #i of the permutation is stored the index of the
              row #j which is swapped with row #i at step #i. That means that each index of the  permutation
              gives the permutation at each step, not the cumulated permutation matrix, which is the product
              of permutations.

              list matrix
                     On entry, the matrix to be factored.  On exit, the factors L and U from the  factoriza-tion factorization
                     tion P*A = L*U; the unit diagonal elements of L are not stored.


       ::math::linearalgebra::det matrix
              Returns  the determinant of the given matrix, based on PA=LU decomposition, i.e. Gauss partial
              pivotal.

              list matrix
                     Square matrix (matrix A)

              list ipiv
                     The pivots (optionnal).  If the pivots are not provided, a PA=LU decomposition is  per-formed. performed.
                     formed.  If the pivots are provided, we assume that it contains the pivots and that the
                     matrix A contains the L and U factors, as provided by dgterf.  b-vectors


       ::math::linearalgebra::largesteigen matrix tolerance maxiter
              Returns a list made of the largest eigenvalue (in magnitude) and associated eigenvector.  Uses
              iterative Power Method as provided as algorithm #7.3.3 of Golub & Van Loan.  This algorithm is
              used here for a dense matrix (but is usually used for sparse matrices).

              list matrix
                     Square matrix (matrix A)

              double tolerance
                     The relative tolerance of the eigenvalue (default:1.e-8).

              integer maxiter
                     The maximum number of iterations (default:10).


       Compability with the LA package Two procedures are provided for compatibility with Hume's LA package:

       ::math::linearalgebra::to_LA mv
              Transforms a vector or matrix into the format used by the original LA package.

              list mv
                     Matrix or vector

       ::math::linearalgebra::from_LA mv
              Transforms  a vector or matrix from the format used by the original LA package into the format
              used by the present implementation.

              list mv
                     Matrix or vector as used by the LA package



STORAGE
       While most procedures assume that the matrices are given in full form, the procedures  solveGaussBand
       and  solveTriangularBand  assume  that  the matrices are stored as band matrices. This common type of
       "sparse" matrices is related to ordinary matrices as follows:

             "A" is a full-size matrix with N rows and M columns.

             "B" is a band matrix, with m upper and lower diagonals and n rows.

             "B" can be stored in an ordinary matrix of (2m+1) columns (one for each off-diagonal  and  the
              main diagonal) and n rows.

             Element  i,j  (i  =  -m,...,m;  j =1,...,n) of "B" corresponds to element k,j of "A" where k =
              M+i-1 and M is at least (!) n, the number of rows in "B".

             To set element (i,j) of matrix "B" use:

                  setelem B $j [expr {$N+$i-1}] $value


       (There is no convenience procedure for this yet)

REMARKS ON THE IMPLEMENTATION
       There is a difference between the original LA package by Hume and the current implementation. Whereas
       the  LA package uses a linear list, the current package uses lists of lists to represent matrices. It
       turns out that with this representation, the algorithms are faster and easier to implement.

       The LA package was used as a model and in fact the implementation of, for instance, the SVD algorithm
       was  taken from that package. The set of procedures was expanded using ideas from the well-known BLAS
       library and some algorithms were updated from the second edition of J.C. Nash's book, Compact Numeri-cal Numerical
       cal Methods for Computers, (Adam Hilger, 1990) that inspired the LA package.

       Two  procedures are provided to make the transition between the two implementations easier: to_LA and
       from_LA. They are described above.

TODO
       Odds and ends: the following algorithms have not been implemented yet:

             determineQR

             certainlyPositive, diagonallyDominant


NAMING CONFLICT
       If you load this package in a Tk-enabled shell like wish, then the command
       namespace import ::math::linearalgebra
       results in an error message about "scale". This is due to the fact that Tk defines all  its  commands
       in the global namespace. The solution is to import the linear algebra commands in a namespace that is
       not the global one:

       package require math::linearalgebra
       namespace eval compute {
           namespace import ::math::linearalgebra::*
           ... use the linear algebra version of scale ...
       }

       To use Tk's scale command in that same namespace you can rename it:

       namespace eval compute {
           rename ::scale scaleTk
           scaleTk .scale ...
       }


BUGS, IDEAS, FEEDBACK
       This document, and the package it describes,  will  undoubtedly  contain  bugs  and  other  problems.
       Please  report  such  in the category math :: linearalgebra of the Tcllib SF Trackers [http://source -
       forge.net/tracker/? group_id=12883].  Please also report any ideas for enhancements you may  have  for
       either package and/or documentation.

KEYWORDS
       least squares, linear algebra, linear equations, math, matrices, vectors

CATEGORY
       Mathematics

COPYRIGHT
       Copyright (c) 2004-2008 Arjen Markus <arjenmarkus@users.sourceforge.net>
       Copyright (c) 2004 Ed Hume <http://www.hume.com/contact.us.htm>
       Copyright (c) 2008 Michael Buadin <relaxkmike@users.sourceforge.net>




math                                                 1.1                              math::linearalgebra(n)

Сообщение о проблемах

Способ сообщить о проблеме с этой страницей руководства зависит от типа проблемы:

Ошибки содержания
Ошибки отчета в содержании этой документации к проекту Tcl.
Отчеты об ошибках
Сообщите об ошибках в функциональности описанного инструмента или API к Apple через Генератор отчетов Ошибки и к проекту Tcl через их страницу создания отчетов ошибки.
Форматирование проблем
Отчет, форматирующий ошибки в интерактивной версии этих страниц со ссылками на отзыв ниже.