Spec-Zone .ru
спецификации, руководства, описания, API
Spec-Zone .ru
спецификации, руководства, описания, API
Библиотека разработчика Mac Разработчик
Поиск

 

Эта страница руководства для  версии 10.9 Mac OS X

Если Вы выполняете различную версию  Mac OS X, просматриваете документацию локально:

Читать страницы руководства

Страницы руководства предназначаются как справочник для людей, уже понимающих технологию.

  • Чтобы изучить, как руководство организовано или узнать о синтаксисе команды, прочитайте страницу руководства для страниц справочника (5).

  • Для получения дополнительной информации об этой технологии, ищите другую документацию в Библиотеке Разработчика Apple.

  • Для получения общей информации о записи сценариев оболочки, считайте Shell, Пишущий сценарий Учебника для начинающих.



math::special(n)                              Tcl Math Library                              math::special(n)



____________________________________________________________________________________________________________

NAME
       math::special - Special mathematical functions

SYNOPSIS
       package require Tcl  ?8.3?

       package require math::special  ?0.2?

       ::math::special::Beta x y

       ::math::special::Gamma x y

       ::math::special::erf x

       ::math::special::erfc x

       ::math::special::J0 x

       ::math::special::J1 x

       ::math::special::Jn n x

       ::math::special::J1/2 x

       ::math::special::J-1/2 x

       ::math::special::I_n x

       ::math::special::cn u k

       ::math::special::dn u k

       ::math::special::sn u k

       ::math::special::elliptic_K k

       ::math::special::elliptic_E k

       ::math::special::exponential_Ei x

       ::math::special::exponential_En n x

       ::math::special::exponential_li x

       ::math::special::exponential_Ci x

       ::math::special::exponential_Si x

       ::math::special::exponential_Chi x

       ::math::special::exponential_Shi x

       ::math::special::fresnel_C x

       ::math::special::fresnel_S x

       ::math::special::sinc x

       ::math::special::legendre n

       ::math::special::chebyshev n

       ::math::special::laguerre alpha n

       ::math::special::hermite n

____________________________________________________________________________________________________________

DESCRIPTION
       This  package  implements  several  so-called  special functions, like the Gamma function, the Bessel
       functions and such.

       Each function is implemented by a procedure that bears its name (well, in close approximation):

             J0 for the zeroth-order Bessel function of the first kind

             J1 for the first-order Bessel function of the first kind

             Jn for the nth-order Bessel function of the first kind

             J1/2 for the half-order Bessel function of the first kind

             J-1/2 for the minus-half-order Bessel function of the first kind

             I_n for the modified Bessel function of the first kind of order n

             Gamma for the Gamma function, erf and erfc for the error function and the complementary  error
              function

             fresnel_C and fresnel_S for the Fresnel integrals

             elliptic_K and elliptic_E (complete elliptic integrals)

             exponent_Ei and other functions related to the so-called exponential integrals

             legendre, hermite: some of the classical orthogonal polynomials.


OVERVIEW
       In  the  following table several characteristics of the functions in this package are summarized: the
       domain for the argument, the values for the parameters and error bounds.

       Family       | Function    | Domain x    | Parameter   | Error bound
       -------------+-------------+-------------+-------------+--------------Bessel -------------+-------------+-------------+-------------+-------------Bessel
       Bessel       | J0, J1,     | all of R    | n = integer |   < 1.0e-8
                    | Jn          |             |             |  (|x|<20, n<20)
       Bessel       | J1/2, J-1/2,|  x > 0      | n = integer |   exact
       Bessel       | I_n         | all of R    | n = integer |   < 1.0e-6
                    |             |             |             |
       Elliptic     | cn          | 0 <= x <= 1 |     --      |   < 1.0e-10
       functions    | dn          | 0 <= x <= 1 |     --      |   < 1.0e-10
                    | sn          | 0 <= x <= 1 |     --      |   < 1.0e-10
       Elliptic     | K           | 0 <= x < 1  |     --      |   < 1.0e-6
       integrals    | E           | 0 <= x < 1  |     --      |   < 1.0e-6
                    |             |             |             |
       Error        | erf         |             |     --      |
       functions    | erfc        |             |             |
                    | ierfc_n     |             |             |
                    |             |             |             |
       Exponential  | Ei          |  x != 0     |     --      |   < 1.0e-10 (relative)
       integrals    | En          |  x >  0     |     --      |   as Ei
                    | li          |  x > 0      |     --      |   as Ei
                    | Chi         |  x > 0      |     --      |   < 1.0e-8
                    | Shi         |  x > 0      |     --      |   < 1.0e-8
                    | Ci          |  x > 0      |     --      |   < 2.0e-4
                    | Si          |  x > 0      |     --      |   < 2.0e-4
                    |             |             |             |
       Fresnel      | C           |  all of R   |     --      |   < 2.0e-3
       integrals    | S           |  all of R   |     --      |   < 2.0e-3
                    |             |             |             |
       general      | Beta        | (see Gamma) |     --      |   < 1.0e-9
                    | Gamma       |  x != 0,-1, |     --      |   < 1.0e-9
                    |             |  -2, ...    |             |
                    | sinc        |  all of R   |     --      |   exact
                    |             |             |             |
       orthogonal   | Legendre    |  all of R   | n = 0,1,... |   exact
       polynomials  | Chebyshev   |  all of R   | n = 0,1,... |   exact
                    | Laguerre    |  all of R   | n = 0,1,... |   exact
                    |             |             | alpha el. R |
                    | Hermite     |  all of R   | n = 0,1,... |   exact

       Note: Some of the error bounds are estimated, as no "formal" bounds were available  with  the  imple-
       mented  approximation method, others hold for the auxiliary functions used for estimating the primary
       functions.

       The following well-known functions are currently missing from the package:

             Bessel functions of the second kind (Y_n, K_n)

             Bessel functions of arbitrary order (and hence the Airy functions)

             Chebyshev polynomials of the second kind (U_n)

             The digamma function (psi)

             The incomplete gamma and beta functions


PROCEDURES
       The package defines the following public procedures:

       ::math::special::Beta x y
              Compute the Beta function for arguments "x" and "y"

              float x
                     First argument for the Beta function

              float y
                     Second argument for the Beta function


       ::math::special::Gamma x y
              Compute the Gamma function for argument "x"

              float x
                     Argument for the Gamma function


       ::math::special::erf x
              Compute the error function for argument "x"

              float x
                     Argument for the error function


       ::math::special::erfc x
              Compute the complementary error function for argument "x"

              float x
                     Argument for the complementary error function


       ::math::special::J0 x
              Compute the zeroth-order Bessel function of the first kind for the argument "x"

              float x
                     Argument for the Bessel function

       ::math::special::J1 x
              Compute the first-order Bessel function of the first kind for the argument "x"

              float x
                     Argument for the Bessel function

       ::math::special::Jn n x
              Compute the nth-order Bessel function of the first kind for the argument "x"

              integer n
                     Order of the Bessel function

              float x
                     Argument for the Bessel function

       ::math::special::J1/2 x
              Compute the half-order Bessel function of the first kind for the argument "x"

              float x
                     Argument for the Bessel function

       ::math::special::J-1/2 x
              Compute the minus-half-order Bessel function of the first kind for the argument "x"

              float x
                     Argument for the Bessel function

       ::math::special::I_n x
              Compute the modified Bessel function of the first kind of order n for the argument "x"

              int x  Positive integer order of the function

              float x
                     Argument for the function

       ::math::special::cn u k
              Compute the elliptic function cn for the argument "u" and parameter "k".

              float u
                     Argument for the function

              float k
                     Parameter

       ::math::special::dn u k
              Compute the elliptic function dn for the argument "u" and parameter "k".

              float u
                     Argument for the function

              float k
                     Parameter

       ::math::special::sn u k
              Compute the elliptic function sn for the argument "u" and parameter "k".

              float u
                     Argument for the function

              float k
                     Parameter

       ::math::special::elliptic_K k
              Compute the complete elliptic integral of the first kind for the argument "k"

              float k
                     Argument for the function

       ::math::special::elliptic_E k
              Compute the complete elliptic integral of the second kind for the argument "k"

              float k
                     Argument for the function

       ::math::special::exponential_Ei x
              Compute the exponential integral of the second kind for the argument "x"

              float x
                     Argument for the function (x != 0)

       ::math::special::exponential_En n x
              Compute the exponential integral of the first kind for the argument "x" and order n

              int n  Order of the integral (n >= 0)

              float x
                     Argument for the function (x >= 0)

       ::math::special::exponential_li x
              Compute the logarithmic integral for the argument "x"

              float x
                     Argument for the function (x > 0)

       ::math::special::exponential_Ci x
              Compute the cosine integral for the argument "x"

              float x
                     Argument for the function (x > 0)

       ::math::special::exponential_Si x
              Compute the sine integral for the argument "x"

              float x
                     Argument for the function (x > 0)

       ::math::special::exponential_Chi x
              Compute the hyperbolic cosine integral for the argument "x"

              float x
                     Argument for the function (x > 0)

       ::math::special::exponential_Shi x
              Compute the hyperbolic sine integral for the argument "x"

              float x
                     Argument for the function (x > 0)

       ::math::special::fresnel_C x
              Compute the Fresnel cosine integral for real argument x

              float x
                     Argument for the function

       ::math::special::fresnel_S x
              Compute the Fresnel sine integral for real argument x

              float x
                     Argument for the function

       ::math::special::sinc x
              Compute the sinc function for real argument x

              float x
                     Argument for the function

       ::math::special::legendre n
              Return the Legendre polynomial of degree n (see THE ORTHOGONAL POLYNOMIALS)

              int n  Degree of the polynomial


       ::math::special::chebyshev n
              Return the Chebyshev polynomial of degree n (of the first kind)

              int n  Degree of the polynomial


       ::math::special::laguerre alpha n
              Return the Laguerre polynomial of degree n with parameter alpha

              float alpha
                     Parameter of the Laguerre polynomial

              int n  Degree of the polynomial


       ::math::special::hermite n
              Return the Hermite polynomial of degree n

              int n  Degree of the polynomial



THE ORTHOGONAL POLYNOMIALS
       For dealing with the classical  families  of  orthogonal  polynomials,  the  package  relies  on  the
       math::polynomials package. To evaluate the polynomial at some coordinate, use the evalPolyn command:

          set leg2 [::math::special::legendre 2]
          puts "Value at x=$x: [::math::polynomials::evalPolyn $leg2 $x]"


       The return value from the legendre and other commands is actually the definition of the corresponding
       polynomial as used in that package.

REMARKS ON THE IMPLEMENTATION
       It should be noted, that the actual implementation of J0 and J1 depends on  straightforward  Gaussian
       quadrature  formulas.  The  (absolute)  accuracy of the results is of the order 1.0e-4 or better. The
       main reason to implement them like that was that it was fast to do (the formulas are simple) and  the
       computations are fast too.

       The implementation of J1/2 does not suffer from this: this function can be expressed exactly in terms
       of elementary functions.

       The functions J0 and J1 are the ones you will encounter most frequently in practice.

       The computation of I_n is based on Miller's algorithm for computing the minimal function from  recur-rence recurrence
       rence relations.

       The  computation of the Gamma and Beta functions relies on the combinatorics package, whereas that of
       the error functions relies on the statistics package.

       The computation of the complete elliptic integrals uses the AGM algorithm.

       Much information about these functions can be found in:

       Abramowitz and Stegun: Handbook of Mathematical Functions (Dover, ISBN 486-61272-4)

BUGS, IDEAS, FEEDBACK
       This document, and the package it describes,  will  undoubtedly  contain  bugs  and  other  problems.
       Please  report  such  in  the  category  math  ::  special  of the Tcllib SF Trackers [http://source -
       forge.net/tracker/? group_id=12883].  Please also report any ideas for enhancements you may  have  for
       either package and/or documentation.

KEYWORDS
       Bessel functions, error function, math, special functions

CATEGORY
       Mathematics

COPYRIGHT
       Copyright (c) 2004 Arjen Markus <arjenmarkus@users.sourceforge.net>




math                                                 0.2                                    math::special(n)

Сообщение о проблемах

Способ сообщить о проблеме с этой страницей руководства зависит от типа проблемы:

Ошибки содержания
Ошибки отчета в содержании этой документации к проекту Tcl.
Отчеты об ошибках
Сообщите об ошибках в функциональности описанного инструмента или API к Apple через Генератор отчетов Ошибки и к проекту Tcl через их страницу создания отчетов ошибки.
Форматирование проблем
Отчет, форматирующий ошибки в интерактивной версии этих страниц со ссылками на отзыв ниже.