Spec-Zone .ru
спецификации, руководства, описания, API
Spec-Zone .ru
спецификации, руководства, описания, API
Библиотека разработчика Mac Разработчик
Поиск

 

Эта страница руководства для  версии 10.9 Mac OS X

Если Вы выполняете различную версию  Mac OS X, просматриваете документацию локально:

Читать страницы руководства

Страницы руководства предназначаются как справочник для людей, уже понимающих технологию.

  • Чтобы изучить, как руководство организовано или узнать о синтаксисе команды, прочитайте страницу руководства для страниц справочника (5).

  • Для получения дополнительной информации об этой технологии, ищите другую документацию в Библиотеке Разработчика Apple.

  • Для получения общей информации о записи сценариев оболочки, считайте Shell, Пишущий сценарий Учебника для начинающих.



math::statistics(n)                           Tcl Math Library                           math::statistics(n)



____________________________________________________________________________________________________________

NAME
       math::statistics - Basic statistical functions and procedures

SYNOPSIS
       package require Tcl  8

       package require math::statistics  0.5

       ::math::statistics::mean data

       ::math::statistics::min data

       ::math::statistics::max data

       ::math::statistics::number data

       ::math::statistics::stdev data

       ::math::statistics::var data

       ::math::statistics::pstdev data

       ::math::statistics::pvar data

       ::math::statistics::median data

       ::math::statistics::basic-stats data

       ::math::statistics::histogram limits values

       ::math::statistics::corr data1 data2

       ::math::statistics::interval-mean-stdev data confidence

       ::math::statistics::t-test-mean data est_mean est_stdev confidence

       ::math::statistics::test-normal data confidence

       ::math::statistics::lillieforsFit data

       ::math::statistics::quantiles data confidence

       ::math::statistics::quantiles limits counts confidence

       ::math::statistics::autocorr data

       ::math::statistics::crosscorr data1 data2

       ::math::statistics::mean-histogram-limits mean stdev number

       ::math::statistics::minmax-histogram-limits min max number

       ::math::statistics::linear-model xdata ydata intercept

       ::math::statistics::linear-residuals xdata ydata intercept

       ::math::statistics::test-2x2 n11 n21 n12 n22

       ::math::statistics::print-2x2 n11 n21 n12 n22

       ::math::statistics::control-xbar data ?nsamples?

       ::math::statistics::control-Rchart data ?nsamples?

       ::math::statistics::test-xbar control data

       ::math::statistics::test-Rchart control data

       ::math::statistics::tstat dof ?alpha?

       ::math::statistics::mv-wls wt1 weights_and_values

       ::math::statistics::mv-ols values

       ::math::statistics::pdf-normal mean stdev value

       ::math::statistics::pdf-exponential mean value

       ::math::statistics::pdf-uniform xmin xmax value

       ::math::statistics::pdf-gamma alpha beta value

       ::math::statistics::pdf-poisson mu k

       ::math::statistics::pdf-chisquare df value

       ::math::statistics::pdf-student-t df value

       ::math::statistics::pdf-beta a b value

       ::math::statistics::cdf-normal mean stdev value

       ::math::statistics::cdf-exponential mean value

       ::math::statistics::cdf-uniform xmin xmax value

       ::math::statistics::cdf-students-t degrees value

       ::math::statistics::cdf-gamma alpha beta value

       ::math::statistics::cdf-poisson mu k

       ::math::statistics::cdf-beta a b value

       ::math::statistics::random-normal mean stdev number

       ::math::statistics::random-exponential mean number

       ::math::statistics::random-uniform xmin xmax number

       ::math::statistics::random-gamma alpha beta number

       ::math::statistics::random-chisquare df number

       ::math::statistics::random-student-t df number

       ::math::statistics::random-beta a b number

       ::math::statistics::histogram-uniform xmin xmax limits number

       ::math::statistics::incompleteGamma x p ?tol?

       ::math::statistics::incompleteBeta a b x ?tol?

       ::math::statistics::filter varname data expression

       ::math::statistics::map varname data expression

       ::math::statistics::samplescount varname list expression

       ::math::statistics::subdivide

       ::math::statistics::plot-scale canvas xmin xmax ymin ymax

       ::math::statistics::plot-xydata canvas xdata ydata tag

       ::math::statistics::plot-xyline canvas xdata ydata tag

       ::math::statistics::plot-tdata canvas tdata tag

       ::math::statistics::plot-tline canvas tdata tag

       ::math::statistics::plot-histogram canvas counts limits tag

____________________________________________________________________________________________________________

DESCRIPTION
       The  math::statistics  package contains functions and procedures for basic statistical data analysis,
       such as:

             Descriptive statistical parameters (mean, minimum, maximum, standard deviation)

             Estimates of the distribution in the form of histograms and quantiles

             Basic testing of hypotheses

             Probability and cumulative density functions

       It is meant to help in developing data analysis applications or doing ad hoc data analysis, it is not
       in  itself  a  full  application,  nor is it intended to rival with full (non-)commercial statistical
       packages.

       The purpose of this document is to describe the implemented procedures and provide some  examples  of
       their usage. As there is ample literature on the algorithms involved, we refer to relevant text books
       for more explanations.  The package contains a fairly large number of public procedures. They can  be
       distinguished  in three sets: general procedures, procedures that deal with specific statistical dis-tributions, distributions,
       tributions, list procedures to select or transform data and simple plotting procedures (these require
       Tk).   Note:  The data that need to be analyzed are always contained in a simple list. Missing values
       are represented as empty list elements.

GENERAL PROCEDURES
       The general statistical procedures are:

       ::math::statistics::mean data
              Determine the mean value of the given list of data.

              list data
                     - List of data


       ::math::statistics::min data
              Determine the minimum value of the given list of data.

              list data
                     - List of data


       ::math::statistics::max data
              Determine the maximum value of the given list of data.

              list data
                     - List of data


       ::math::statistics::number data
              Determine the number of non-missing data in the given list

              list data
                     - List of data


       ::math::statistics::stdev data
              Determine the sample standard deviation of the data in the given list

              list data
                     - List of data


       ::math::statistics::var data
              Determine the sample variance of the data in the given list

              list data
                     - List of data


       ::math::statistics::pstdev data
              Determine the population standard deviation of the data in the given list

              list data
                     - List of data


       ::math::statistics::pvar data
              Determine the population variance of the data in the given list

              list data
                     - List of data


       ::math::statistics::median data
              Determine the median of the data in the given list (Note that this requires sorting the  data,
              which may be a costly operation)

              list data
                     - List of data


       ::math::statistics::basic-stats data
              Determine  a  list  of all the descriptive parameters: mean, minimum, maximum, number of data,
              sample standard deviation, sample variance, population standard deviation and population vari-ance. variance.
              ance.

              (This  routine  is  called  whenever  either  or  all  of the basic statistical parameters are
              required. Hence all calculations are done and the relevant values are returned.)

              list data
                     - List of data


       ::math::statistics::histogram limits values
              Determine histogram information for the given list of data. Returns a list consisting  of  the
              number  of  values  that  fall into each interval.  (The first interval consists of all values
              lower than the first limit, the last interval consists of all values  greater  than  the  last
              limit.  There is one more interval than there are limits.)

              list limits
                     - List of upper limits (in ascending order) for the intervals of the histogram.

              list values
                     - List of data


       ::math::statistics::corr data1 data2
              Determine the correlation coefficient between two sets of data.

              list data1
                     - First list of data

              list data2
                     - Second list of data


       ::math::statistics::interval-mean-stdev data confidence
              Return the interval containing the mean value and one containing the standard deviation with a
              certain level of confidence (assuming a normal distribution)

              list data
                     - List of raw data values (small sample)

              float confidence
                     - Confidence level (0.95 or 0.99 for instance)


       ::math::statistics::t-test-mean data est_mean est_stdev confidence
              Test whether the mean value of a sample is in accordance with the estimated  normal  distribu-tion distribution
              tion  with  a certain level of confidence.  Returns 1 if the test succeeds or 0 if the mean is
              unlikely to fit the given distribution.

              list data
                     - List of raw data values (small sample)

              float est_mean
                     - Estimated mean of the distribution

              float est_stdev
                     - Estimated stdev of the distribution

              float confidence
                     - Confidence level (0.95 or 0.99 for instance)


       ::math::statistics::test-normal data confidence
              Test whether the given data follow a normal distribution with a certain level  of  confidence.
              Returns  1  if  the data are normally distributed within the level of confidence, returns 0 if
              not. The underlying test is the Lilliefors test.

              list data
                     - List of raw data values

              float confidence
                     - Confidence level (one of 0.80, 0.90, 0.95 or 0.99)


       ::math::statistics::lillieforsFit data
              Returns the goodness of fit to a normal distribution according to Lilliefors. The  higher  the
              number,  the  more likely the data are indeed normally distributed. The test requires at least
              five data points.

              list data
                     - List of raw data values


       ::math::statistics::quantiles data confidence
              Return the quantiles for a given set of data


              list data
                     - List of raw data values


              float confidence
                     - Confidence level (0.95 or 0.99 for instance)



       ::math::statistics::quantiles limits counts confidence
              Return the quantiles based on histogram information (alternative to the call  with  two  argu-ments) arguments)
              ments)

              list limits
                     - List of upper limits from histogram

              list counts
                     - List of counts for for each interval in histogram

              float confidence
                     -  Confidence level (0.95 or 0.99 for instance)


       ::math::statistics::autocorr data
              Return  the  autocorrelation  function as a list of values (assuming equidistance between sam-ples, samples,
              ples, about 1/2 of the number of raw data)

              The correlation is determined in such a way that the first value is always 1  and  all  others
              are equal to or smaller than 1. The number of values involved will diminish as the "time" (the
              index in the list of returned values) increases

              list data
                     - Raw data for which the autocorrelation must be determined


       ::math::statistics::crosscorr data1 data2
              Return the cross-correlation function as a list of values (assuming equidistance between  sam-ples, samples,
              ples, about 1/2 of the number of raw data)

              The  correlation  is determined in such a way that the values can never exceed 1 in magnitude.
              The number of values involved will diminish as the "time" (the index in the list  of  returned
              values) increases.

              list data1
                     - First list of data

              list data2
                     - Second list of data


       ::math::statistics::mean-histogram-limits mean stdev number
              Determine  reasonable  limits based on mean and standard deviation for a histogram Convenience
              function - the result is suitable for the histogram function.

              float mean
                     - Mean of the data

              float stdev
                     - Standard deviation

              int number
                     - Number of limits to generate (defaults to 8)


       ::math::statistics::minmax-histogram-limits min max number
              Determine reasonable limits based on a minimum and maximum for a histogram

              Convenience function - the result is suitable for the histogram function.

              float min
                     - Expected minimum

              float max
                     - Expected maximum

              int number
                     - Number of limits to generate (defaults to 8)


       ::math::statistics::linear-model xdata ydata intercept
              Determine the coefficients for a linear regression between two series of data (the model: Y  =
              A + B*X). Returns a list of parameters describing the fit

              list xdata
                     - List of independent data

              list ydata
                     - List of dependent data to be fitted

              boolean intercept
                     - (Optional) compute the intercept (1, default) or fit to a line through the origin (0)

                     The result consists of the following list:

                           (Estimate of) Intercept A

                           (Estimate of) Slope B

                           Standard deviation of Y relative to fit

                           Correlation coefficient R2

                           Number of degrees of freedom df

                           Standard error of the intercept A

                           Significance level of A

                           Standard error of the slope B

                           Significance level of B


       ::math::statistics::linear-residuals xdata ydata intercept
              Determine the difference between actual data and predicted from the linear model.

              Returns a list of the differences between the actual data and the predicted values.

              list xdata
                     - List of independent data

              list ydata
                     - List of dependent data to be fitted

              boolean intercept
                     - (Optional) compute the intercept (1, default) or fit to a line through the origin (0)


       ::math::statistics::test-2x2 n11 n21 n12 n22
              Determine  if  two  set of samples, each from a binomial distribution, differ significantly or
              not (implying a different parameter).

              Returns the "chi-square" value, which can be used to the determine the significance.

              int n11
                     - Number of outcomes with the first value from the first sample.

              int n21
                     - Number of outcomes with the first value from the second sample.

              int n12
                     - Number of outcomes with the second value from the first sample.

              int n22
                     - Number of outcomes with the second value from the second sample.


       ::math::statistics::print-2x2 n11 n21 n12 n22
              Determine if two set of samples, each from a binomial distribution,  differ  significantly  or
              not (implying a different parameter).

              Returns a short report, useful in an interactive session.

              int n11
                     - Number of outcomes with the first value from the first sample.

              int n21
                     - Number of outcomes with the first value from the second sample.

              int n12
                     - Number of outcomes with the second value from the first sample.

              int n22
                     - Number of outcomes with the second value from the second sample.


       ::math::statistics::control-xbar data ?nsamples?
              Determine  the control limits for an xbar chart. The number of data in each subsample defaults
              to 4. At least 20 subsamples are required.

              Returns the mean, the lower limit, the upper limit and the number of data per subsample.

              list data
                     - List of observed data

              int nsamples
                     - Number of data per subsample


       ::math::statistics::control-Rchart data ?nsamples?
              Determine the control limits for an R chart. The number of data in each  subsample  (nsamples)
              defaults to 4. At least 20 subsamples are required.

              Returns the mean range, the lower limit, the upper limit and the number of data per subsample.

              list data
                     - List of observed data

              int nsamples
                     - Number of data per subsample


       ::math::statistics::test-xbar control data
              Determine if the data exceed the control limits for the xbar chart.

              Returns a list of subsamples (their indices) that indeed violate the limits.

              list control
                     - Control limits as returned by the "control-xbar" procedure

              list data
                     - List of observed data


       ::math::statistics::test-Rchart control data
              Determine if the data exceed the control limits for the R chart.

              Returns a list of subsamples (their indices) that indeed violate the limits.

              list control
                     - Control limits as returned by the "control-Rchart" procedure

              list data
                     - List of observed data



MULTIVARIATE LINEAR REGRESSION
       Besides the linear regression with a single independent variable, the statistics package provides two
       procedures  for doing ordinary least squares (OLS) and weighted least squares (WLS) linear regression
       with several variables. They were written by Eric Kemp-Benedict.

       In addition to these two, it provides a procedure (tstat) for calculating the value of the  t-statis-tic t-statistic
       tic  for  the specified number of degrees of freedom that is required to demonstrate a given level of
       significance.

       Note: These procedures depend on the math::linearalgebra package.

       Description of the procedures

       ::math::statistics::tstat dof ?alpha?
              Returns the value of the t-distribution t* satisfying

                  P(t*)  =  1 - alpha/2
                  P(-t*) =  alpha/2

              for the number of degrees of freedom dof.

              Given a sample of normally-distributed data x, with an estimate xbar for the mean and sbar for
              the standard deviation, the alpha confidence interval for the estimate of the mean can be cal-culated calculated
              culated as

                    ( xbar - t* sbar , xbar + t* sbar)

              The return values from this procedure can be compared to an estimated t-statistic to determine
              whether  the  estimated value of a parameter is significantly different from zero at the given
              confidence level.

              int dof
                     Number of degrees of freedom

              float alpha
                     Confidence level of the t-distribution. Defaults to 0.05.


       ::math::statistics::mv-wls wt1 weights_and_values
              Carries out a weighted least squares linear regression for  the  data  points  provided,  with
              weights assigned to each point.

              The linear model is of the form

                  y = b0 + b1 * x1 + b2 * x2 ... + bN * xN + error

              and each point satisfies

                  yi = b0 + b1 * xi1 + b2 * xi2 + ... + bN * xiN + Residual_i


              The procedure returns a list with the following elements:

                    The r-squared statistic

                    The adjusted r-squared statistic

                    A list containing the estimated coefficients b1, ... bN, b0 (The constant b0 comes last
                     in the list.)

                    A list containing the standard errors of the coefficients

                    A list containing the 95% confidence bounds of  the  coefficients,  with  each  set  of
                     bounds returned as a list with two values
       Arguments:

              list weights_and_values
                     A  list  consisting  of:  the  weight for the first observation, the data for the first
                     observation (as a sublist), the weight for the second observation (as a sublist) and so
                     on.  The sublists of data are organised as lists of the value of the dependent variable
                     y and the independent variables x1, x2 to xN.


       ::math::statistics::mv-ols values
              Carries out an ordinary least squares linear regression for the data points provided.

              This procedure simply calls ::mvlinreg::wls with the weights set to 1.0, and returns the  same
              information.

       Example of the use:

       # Store the value of the unicode value for the "+/-" character
       set pm "\u00B1"

       # Provide some data
       set data {{  -.67  14.18  60.03 -7.5  }
                 { 36.97  15.52  34.24 14.61 }
                 {-29.57  21.85  83.36 -7.   }
                 {-16.9   11.79  51.67 -6.56 }
                 { 14.09  16.24  36.97 -12.84}
                 { 31.52  20.93  45.99 -25.4 }
                 { 24.05  20.69  50.27  17.27}
                 { 22.23  16.91  45.07  -4.3 }
                 { 40.79  20.49  38.92  -.73 }
                 {-10.35  17.24  58.77  18.78}}

       # Call the ols routine
       set results [::math::statistics::mv-ols $data]

       # Pretty-print the results
       puts "R-squared: [lindex $results 0]"
       puts "Adj R-squared: [lindex $results 1]"
       puts "Coefficients $pm s.e. -- \[95% confidence interval\]:"
       foreach val [lindex $results 2] se [lindex $results 3] bounds [lindex $results 4] {
           set lb [lindex $bounds 0]
           set ub [lindex $bounds 1]
           puts "   $val $pm $se -- \[$lb to $ub\]"
       }


STATISTICAL DISTRIBUTIONS
       In  the  literature  a large number of probability distributions can be found. The statistics package
       supports:

             The normal or Gaussian distribution

             The uniform distribution - equal probability for all data within a given interval

             The exponential distribution - useful as a model for certain extreme-value distributions.

             The gamma distribution - based on the incomplete Gamma integral

             The chi-square distribution

             The student's T distribution

             The Poisson distribution

             PM - binomial,F.

       In principle for each distribution one has procedures for:

             The probability density (pdf-*)

             The cumulative density (cdf-*)

             Quantiles for the given distribution (quantiles-*)

             Histograms for the given distribution (histogram-*)

             List of random values with the given distribution (random-*)

       The following procedures have been implemented:

       ::math::statistics::pdf-normal mean stdev value
              Return the probability of a given value for a normal distribution with given mean and standard
              deviation.

              float mean
                     - Mean value of the distribution

              float stdev
                     - Standard deviation of the distribution

              float value
                     - Value for which the probability is required


       ::math::statistics::pdf-exponential mean value
              Return the probability of a given value for an exponential distribution with given mean.

              float mean
                     - Mean value of the distribution

              float value
                     - Value for which the probability is required


       ::math::statistics::pdf-uniform xmin xmax value
              Return the probability of a given value for a uniform distribution with given extremes.

              float xmin
                     - Minimum value of the distribution

              float xmin
                     - Maximum value of the distribution

              float value
                     - Value for which the probability is required


       ::math::statistics::pdf-gamma alpha beta value
              Return  the  probability  of  a given value for a Gamma distribution with given shape and rate
              parameters

              float alpha
                     - Shape parameter

              float beta
                     - Rate parameter

              float value
                     - Value for which the probability is required


       ::math::statistics::pdf-poisson mu k
              Return the probability of a given number of occurrences in the same interval (k) for a Poisson
              distribution with given mean (mu)

              float mu
                     - Mean number of occurrences

              int k  - Number of occurences


       ::math::statistics::pdf-chisquare df value
              Return  the  probability  of a given value for a chi square distribution with given degrees of
              freedom

              float df
                     - Degrees of freedom

              float value
                     - Value for which the probability is required


       ::math::statistics::pdf-student-t df value
              Return the probability of a given value for a Student's t distribution with given  degrees  of
              freedom

              float df
                     - Degrees of freedom

              float value
                     - Value for which the probability is required


       ::math::statistics::pdf-beta a b value
              Return the probability of a given value for a Beta distribution with given shape parameters

              float a
                     - First shape parameter

              float b
                     - First shape parameter

              float value
                     - Value for which the probability is required


       ::math::statistics::cdf-normal mean stdev value
              Return  the  cumulative probability of a given value for a normal distribution with given mean
              and standard deviation, that is the probability for values up to the given one.

              float mean
                     - Mean value of the distribution

              float stdev
                     - Standard deviation of the distribution

              float value
                     - Value for which the probability is required


       ::math::statistics::cdf-exponential mean value
              Return the cumulative probability of a given value for an exponential distribution with  given
              mean.

              float mean
                     - Mean value of the distribution

              float value
                     - Value for which the probability is required


       ::math::statistics::cdf-uniform xmin xmax value
              Return  the  cumulative  probability  of  a  given value for a uniform distribution with given
              extremes.

              float xmin
                     - Minimum value of the distribution

              float xmin
                     - Maximum value of the distribution

              float value
                     - Value for which the probability is required


       ::math::statistics::cdf-students-t degrees value
              Return the cumulative probability of a given value for a Student's t distribution  with  given
              number of degrees.

              int degrees
                     - Number of degrees of freedom

              float value
                     - Value for which the probability is required


       ::math::statistics::cdf-gamma alpha beta value
              Return  the  cumulative probability of a given value for a Gamma distribution with given shape
              and rate parameters

              float alpha
                     - Shape parameter

              float beta
                     - Rate parameter

              float value
                     - Value for which the cumulative probability is required


       ::math::statistics::cdf-poisson mu k
              Return the cumulative probability of a given number of occurrences in the  same  interval  (k)
              for a Poisson distribution with given mean (mu)

              float mu
                     - Mean number of occurrences

              int k  - Number of occurences


       ::math::statistics::cdf-beta a b value
              Return  the  cumulative  probability of a given value for a Beta distribution with given shape
              parameters

              float a
                     - First shape parameter

              float b
                     - First shape parameter

              float value
                     - Value for which the probability is required


       ::math::statistics::random-normal mean stdev number
              Return a list of "number" random values satisfying a normal distribution with given  mean  and
              standard deviation.

              float mean
                     - Mean value of the distribution

              float stdev
                     - Standard deviation of the distribution

              int number
                     - Number of values to be returned


       ::math::statistics::random-exponential mean number
              Return  a  list  of  "number"  random values satisfying an exponential distribution with given
              mean.

              float mean
                     - Mean value of the distribution

              int number
                     - Number of values to be returned


       ::math::statistics::random-uniform xmin xmax number
              Return a list of "number" random values satisfying a uniform distribution with given extremes.

              float xmin
                     - Minimum value of the distribution

              float xmax
                     - Maximum value of the distribution

              int number
                     - Number of values to be returned


       ::math::statistics::random-gamma alpha beta number
              Return  a  list of "number" random values satisfying a Gamma distribution with given shape and
              rate parameters

              float alpha
                     - Shape parameter

              float beta
                     - Rate parameter

              int number
                     - Number of values to be returned


       ::math::statistics::random-chisquare df number
              Return a list of "number" random values  satisfying  a  chi  square  distribution  with  given
              degrees of freedom

              float df
                     - Degrees of freedom

              int number
                     - Number of values to be returned


       ::math::statistics::random-student-t df number
              Return  a  list  of  "number"  random  values satisfying a Student's t distribution with given
              degrees of freedom

              float df
                     - Degrees of freedom

              int number
                     - Number of values to be returned


       ::math::statistics::random-beta a b number
              Return a list of "number" random values satisfying a Beta distribution with given shape param-eters parameters
              eters

              float a
                     - First shape parameter

              float b
                     - Second shape parameter

              int number
                     - Number of values to be returned


       ::math::statistics::histogram-uniform xmin xmax limits number
              Return the expected histogram for a uniform distribution.

              float xmin
                     - Minimum value of the distribution

              float xmax
                     - Maximum value of the distribution

              list limits
                     - Upper limits for the buckets in the histogram

              int number
                     - Total number of "observations" in the histogram


       ::math::statistics::incompleteGamma x p ?tol?
              Evaluate the incomplete Gamma integral

                                  1       / x               p-1
                    P(p,x) =  --------   |   dt exp(-t) * t
                              Gamma(p)  / 0


              float x
                     - Value of x (limit of the integral)

              float p
                     - Value of p in the integrand

              float tol
                     - Required tolerance (default: 1.0e-9)


       ::math::statistics::incompleteBeta a b x ?tol?
              Evaluate the incomplete Beta integral

              float a
                     - First shape parameter

              float b
                     - Second shape parameter

              float x
                     - Value of x (limit of the integral)

              float tol
                     - Required tolerance (default: 1.0e-9)


       TO DO: more function descriptions to be added

DATA MANIPULATION
       The data manipulation procedures act on lists or lists of lists:

       ::math::statistics::filter varname data expression
              Return  a  list  consisting of the data for which the logical expression is true (this command
              works analogously to the command foreach).

              string varname
                     - Name of the variable used in the expression

              list data
                     - List of data

              string expression
                     - Logical expression using the variable name


       ::math::statistics::map varname data expression
              Return a list consisting of the data that are transformed via the expression.

              string varname
                     - Name of the variable used in the expression

              list data
                     - List of data

              string expression
                     - Expression to be used to transform (map) the data


       ::math::statistics::samplescount varname list expression
              Return a list consisting of the counts of all data in the sublists of the "list" argument  for
              which the expression is true.

              string varname
                     - Name of the variable used in the expression

              list data
                     - List of sublists, each containing the data

              string expression
                     - Logical expression to test the data (defaults to "true").


       ::math::statistics::subdivide
              Routine PM - not implemented yet


PLOT PROCEDURES
       The following simple plotting procedures are available:

       ::math::statistics::plot-scale canvas xmin xmax ymin ymax
              Set  the  scale  for  a plot in the given canvas. All plot routines expect this function to be
              called first. There is no automatic scaling provided.

              widget canvas
                     - Canvas widget to use

              float xmin
                     - Minimum x value

              float xmax
                     - Maximum x value

              float ymin
                     - Minimum y value

              float ymax
                     - Maximum y value


       ::math::statistics::plot-xydata canvas xdata ydata tag
              Create a simple XY plot in the given canvas - the data are shown as a collection of dots.  The
              tag can be used to manipulate the appearance.

              widget canvas
                     - Canvas widget to use

              float xdata
                     - Series of independent data

              float ydata
                     - Series of dependent data

              string tag
                     - Tag to give to the plotted data (defaults to xyplot)


       ::math::statistics::plot-xyline canvas xdata ydata tag
              Create  a  simple  XY plot in the given canvas - the data are shown as a line through the data
              points. The tag can be used to manipulate the appearance.

              widget canvas
                     - Canvas widget to use

              list xdata
                     - Series of independent data

              list ydata
                     - Series of dependent data

              string tag
                     - Tag to give to the plotted data (defaults to xyplot)


       ::math::statistics::plot-tdata canvas tdata tag
              Create a simple XY plot in the given canvas - the data are shown as a collection of dots.  The
              horizontal coordinate is equal to the index. The tag can be used to manipulate the appearance.
              This type of presentation is suitable  for  autocorrelation  functions  for  instance  or  for
              inspecting the time-dependent behaviour.

              widget canvas
                     - Canvas widget to use

              list tdata
                     - Series of dependent data

              string tag
                     - Tag to give to the plotted data (defaults to xyplot)


       ::math::statistics::plot-tline canvas tdata tag
              Create a simple XY plot in the given canvas - the data are shown as a line. See plot-tdata for
              an explanation.

              widget canvas
                     - Canvas widget to use

              list tdata
                     - Series of dependent data

              string tag
                     - Tag to give to the plotted data (defaults to xyplot)


       ::math::statistics::plot-histogram canvas counts limits tag
              Create a simple histogram in the given canvas

              widget canvas
                     - Canvas widget to use

              list counts
                     - Series of bucket counts

              list limits
                     - Series of upper limits for the buckets

              string tag
                     - Tag to give to the plotted data (defaults to xyplot)



THINGS TO DO
       The following procedures are yet to be implemented:

             F-test-stdev

             interval-mean-stdev

             histogram-normal

             histogram-exponential

             test-histogram

             test-corr

             quantiles-*

             fourier-coeffs

             fourier-residuals

             onepar-function-fit

             onepar-function-residuals

             plot-linear-model

             subdivide


EXAMPLES
       The code below is a small example of how you can examine a set of data:



       # Simple example:
       # - Generate data (as a cheap way of getting some)
       # - Perform statistical analysis to describe the data
       #
       package require math::statistics

       #
       # Two auxiliary procs
       #
       proc pause {time} {
          set wait 0
          after [expr {$time*1000}] {set ::wait 1}
          vwait wait
       }

       proc print-histogram {counts limits} {
          foreach count $counts limit $limits {
             if { $limit != {} } {
                puts [format "<%12.4g\t%d" $limit $count]
                set prev_limit $limit
             } else {
                puts [format ">%12.4g\t%d" $prev_limit $count]
             }
          }
       }

       #
       # Our source of arbitrary data
       #
       proc generateData { data1 data2 } {
          upvar 1 $data1 _data1
          upvar 1 $data2 _data2

          set d1 0.0
          set d2 0.0
          for { set i 0 } { $i < 100 } { incr i } {
             set d1 [expr {10.0-2.0*cos(2.0*3.1415926*$i/24.0)+3.5*rand()}]
             set d2 [expr {0.7*$d2+0.3*$d1+0.7*rand()}]
             lappend _data1 $d1
             lappend _data2 $d2
          }
          return {}
       }

       #
       # The analysis session
       #
       package require Tk
       console show
       canvas .plot1
       canvas .plot2
       pack   .plot1 .plot2 -fill both -side top

       generateData data1 data2

       puts "Basic statistics:"
       set b1 [::math::statistics::basic-stats $data1]
       set b2 [::math::statistics::basic-stats $data2]
       foreach label {mean min max number stdev var} v1 $b1 v2 $b2 {
          puts "$label\t$v1\t$v2"
       }
       puts "Plot the data as function of \"time\" and against each other"
       ::math::statistics::plot-scale .plot1  0 100  0 20
       ::math::statistics::plot-scale .plot2  0 20   0 20
       ::math::statistics::plot-tline .plot1 $data1
       ::math::statistics::plot-tline .plot1 $data2
       ::math::statistics::plot-xydata .plot2 $data1 $data2

       puts "Correlation coefficient:"
       puts [::math::statistics::corr $data1 $data2]

       pause 2
       puts "Plot histograms"
       ::math::statistics::plot-scale .plot2  0 20 0 100
       set limits         [::math::statistics::minmax-histogram-limits 7 16]
       set histogram_data [::math::statistics::histogram $limits $data1]
       ::math::statistics::plot-histogram .plot2 $histogram_data $limits

       puts "First series:"
       print-histogram $histogram_data $limits

       pause 2
       set limits         [::math::statistics::minmax-histogram-limits 0 15 10]
       set histogram_data [::math::statistics::histogram $limits $data2]
       ::math::statistics::plot-histogram .plot2 $histogram_data $limits d2

       puts "Second series:"
       print-histogram $histogram_data $limits

       puts "Autocorrelation function:"
       set  autoc [::math::statistics::autocorr $data1]
       puts [::math::statistics::map $autoc {[format "%.2f" $x]}]
       puts "Cross-correlation function:"
       set  crossc [::math::statistics::crosscorr $data1 $data2]
       puts [::math::statistics::map $crossc {[format "%.2f" $x]}]

       ::math::statistics::plot-scale .plot1  0 100 -1  4
       ::math::statistics::plot-tline .plot1  $autoc "autoc"
       ::math::statistics::plot-tline .plot1  $crossc "crossc"

       puts "Quantiles: 0.1, 0.2, 0.5, 0.8, 0.9"
       puts "First:  [::math::statistics::quantiles $data1 {0.1 0.2 0.5 0.8 0.9}]"
       puts "Second: [::math::statistics::quantiles $data2 {0.1 0.2 0.5 0.8 0.9}]"


       If you run this example, then the following should be clear:

             There is a strong correlation between two time series, as displayed by the raw data and  espe-
              cially by the correlation functions.

             Both time series show a significant periodic component

             The  histograms are not very useful in identifying the nature of the time series - they do not
              show the periodic nature.


BUGS, IDEAS, FEEDBACK
       This document, and the package it describes,  will  undoubtedly  contain  bugs  and  other  problems.
       Please  report  such  in  the  category  math :: statistics of the Tcllib SF Trackers [http://source -
       forge.net/tracker/? group_id=12883].  Please also report any ideas for enhancements you may  have  for
       either package and/or documentation.

KEYWORDS
       data analysis, mathematics, statistics

CATEGORY
       Mathematics



math                                                 0.5                                 math::statistics(n)

Сообщение о проблемах

Способ сообщить о проблеме с этой страницей руководства зависит от типа проблемы:

Ошибки содержания
Ошибки отчета в содержании этой документации к проекту Tcl.
Отчеты об ошибках
Сообщите об ошибках в функциональности описанного инструмента или API к Apple через Генератор отчетов Ошибки и к проекту Tcl через их страницу создания отчетов ошибки.
Форматирование проблем
Отчет, форматирующий ошибки в интерактивной версии этих страниц со ссылками на отзыв ниже.