
Xcode Overview

Contents

About Xcode 5
At a Glance 5

Single-Window Interface 5
Assisted Source Code Editing 6
Graphical UI Design 8
Integrated Debugging 11
Testing and Continuous Integrations 13
Automatic Saves, Project Snapshots, and Source Control Management 14
Integrated Documentation 16
App Distribution to Testers and the App Store 17

See Also 18

Develop Your App in the Workspace Window 19
Navigate Your Workspace 21
Edit Your Project Files 22
Access Resources and Inspect Elements in the Utilities Area 25
Manage Common Tasks with the Workspace Toolbar 27
Work in Multiple Tabs or Multiple Windows 28

Maintain Your Code and Other Resources in Projects or Workspaces 30
A Project Is a Repository of Files and Resources for Building Apps 31
Apply App-Specific Settings to a Target 33
Add Technology Features to a Target 34
Add File Type and Service Information to a Target 35
Override Build Settings for a Target 36
Use Workspaces to Work on Related Projects 36
Close and Reopen a Project or a Workspace 37

Write Code in the Source Editor 38
Fix Errors as You Type 39
Drop Code Snippets into Your Files 40
Create Source Files from Templates 41
Perform Static Code Analysis 42
Speed Up Typing with Code Completion 43

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

2

Split the Editor to Display Related Content 44
Open a File Quickly 47
Use Gestures and Keyboard Shortcuts 47
Automate Extensive Changes in Your Code 48
Display the Definition of a Symbol 51
Examine the Structure of Your Code with Code Folding 53
Match Pairs of Braces, Parentheses, and Brackets Automatically 53
Choose Syntax-Aware Fonts and Text Colors 54
Customize Editing and Indenting Options 54
Look Up Documentation for a Symbol 55
Find Help for Using the Source Editor 59

Build a User Interface 61
Add User Interface Elements from the Object Library 63
Lay Out User Interface Objects for Automatic Resizing and Positioning 66
Connect User Interface Objects to Code 69

Send Action Messages from a Control to Your Code 70
Send Messages to a User Interface Object Through an Outlet 72

Design the User Interface of Your App with Storyboards 73
Adapt to Multiple iOS Screen Sizes and Orientations with Size Classes 75
Find and Replace Strings 78
Look Up Documentation for an Object 79
Creating and Rendering Custom View Classes on the Canvas 80
Find Help for Using Interface Builder 82

Add Icons, Images, and Effects 84
Add App Icons and Launch Images 85

Work with Image Assets in the Asset Catalog 85
Create and Set the iOS Launch Images or Launch Screen File 86
Create and Set iOS Launch Images for iOS 7 and Earlier 87

Add Particle Emitter Effects 87
Add 3D Scenes to Your App 89

Find More Help 90

Run Your App 91
Choose a Scheme to Build Your App 91
Choose a Destination to Run Your App 92
Run Your App 92

Run Your App in iOS Simulator 94
Run Your App on a Connected Device 95

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

3

Contents

Edit, Create, and Manage Schemes 97

Debug Your App 100
Control Execution and View State Information 101
Examine Your App’s View Hierarchy at Runtime 104
Examine Your App’s Impact on System Resources 105
Measure Your App’s Performance 107
Perform Early Testing in iOS Simulator 108
Customize Your Debugging Workflow 109

Test Your App 112
Create and Run Tests 112
Automate Unit Testing as Part of a Continuous Integration Workflow 114

Save and Revert Changes 115
Revert to the Last Saved Version of a File 115
Undo File Changes Incrementally 115
Use Snapshots to Restore Projectwide Changes 116
Store and Track Changes with Source Control 120

Compare File Versions to Revert Lines of Code 123
Create a Branch to Isolate Risky Changes 123

Learn More About Xcode 124
Get a Hands-On Introduction 124
Find Step-by-Step Instructions 125
Learn from Detailed User Guides 127
Stay Up to Date 131

Document Revision History 133

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

4

Contents

Xcode is Apple’s integrated development environment (IDE) that you use to build apps for Apple products
such as the iPad, iPhone, and Mac. Xcode provides tools to manage your entire development workflow—from
creating your app, to testing, optimizing, and submitting it to the App Store.

At a Glance
Use the App Store app on your Mac to download Xcode. It’s free. After you download Xcode, it automatically
appears in Launchpad, where you can click the icon for Xcode to launch it.

Single-Window Interface
The Xcode interface integrates code editing, user interface design, asset management, testing, and debugging
within a single workspace window. The window reconfigures its content as you work. For example, select a
file in one area, and an appropriate editor opens in another area. Select a symbol or user interface object, and
its documentation appears in a nearby pane.

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

5

About Xcode

https://itunes.apple.com/us/app/xcode/id497799835?mt=12&ls=1

You can focus on a task by displaying only what you need, such as only your source code or only your user
interface layout. Or you can work with your code and UI layout side by side. You can further customize your
environment by opening multiple windows and multiple tabs per window.

Relevant Chapters: Develop Your App in the Workspace Window (page 19), Maintain Your Code
and Other Resources in Projects or Workspaces (page 30).

Assisted Source Code Editing
Whether you are using Objective-C, Swift, C, C++, or a mix, Xcode checks your source code as you type it. When
Xcode notices a mistake, the source code editor highlights the error and when possible, offers to fix it. Xcode
speeds up your typing with intelligent code completion. Reduce your typing further with ready-to-use code
snippets and source file templates, either the ones provided or ones you add. With Swift, Playgrounds let you
experiment with code without building and running your app. For more information on playgrounds, see
Playground Help.

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

6

You can easily configure the source editor to display multiple views of the same file or to view multiple related
files at once. Search-and-replace and refactoring operations help you make extensive changes to your code
quickly and safely. With these and other capabilities, Xcode makes it easier for you to write better code faster
than you thought possible.

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

7

Relevant Chapter: Write Code in the Source Editor (page 38).

Graphical UI Design
Interface Builder is a visual design editor that’s integrated into Xcode. Use Interface Builder to create the user
interfaces of your iOS or Mac apps by assembling windows, views, controls, menus, and other elements from
a library of configurable objects, or from ones you create. Use Storyboards to specify the flow of your applications
and the transitions between scenes. Then graphically connect the objects and transitions to your implementation
code.

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

8

With the Auto Layout feature, define constraints for your objects so that they automatically adjust to screen
size, window size, and localization. With Size Classes, tune your mobile UI for any combination of screen size
and orientation: customizing Auto Layout constraints, adding or removing views, and even changing the font.

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

9

The asset catalog in Xcode helps you manage the many images you’ll use for your app’s user interface—items
such as icons, custom artwork, and launch images for iOS devices. With the particle emitter editor in Xcode,
you can enhance your iOS or Mac game by adding animation effects involving moving particles such as snow,
sparks, and smoke. For Mac apps, the SceneKit editor helps you work with scenes created in 3D authoring tools
and exported as digital asset exchange (DAE) files.

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

10

Relevant Chapters: Build a User Interface (page 61) and Add Icons, Images, and Effects (page 84).

Integrated Debugging
When Xcode launches your app in debug mode, it immediately starts a debugging session. If you are running
an iOS app, Xcode launches it either in iOS Simulator or on an iOS device connected to your Mac. If you are
running a Mac app, Xcode launches it directly on your Mac.

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

11

You can debug your app directly within the source editor. View the contents of an object by moving your
mouse over a variable name, and then use Quick Look to inspect a particular value. The debug area and the
debug navigator let you carefully control the execution of your app while you examine the code. For finer
control, the console gives command line access to the debugger.

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

12

Debug gauges display your app’s resource consumption to help you identify problems before your users do.

Relevant Chapters: Run Your App (page 91) and Debug Your App (page 100).

Testing and Continuous Integrations
To help you build a better app, Xcode includes a testing framework for functional and performance testing.
You write the tests and use the test navigator to run those tests and see the results. You test code functionality
unit tests. Performance tests make sure important parts of your app don’t leave the user waiting. Set triggers
for running tests on a regular basis so you catch regression bugs in code and in performance.

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

13

Run your tests in the test navigator, look at the results, and make any changes needed to pass the tests. You
can use the Xcode service, available in OS X Server, to automate the execution of tests. From Xcode on your
development Mac, you create bots that run on a separate server to execute your unit tests either periodically
or on every source code commit.

In addition to running unit tests, bots automatically perform static analysis on your code, build your app, and
archive it for distribution to testers or the App Store. While performing these continuous integrations of your
app, bots report build errors and warnings, static analyzer problems, and unit test failures.

Relevant Chapter: Test Your App (page 112).

Automatic Saves, Project Snapshots, and Source Control Management
While you work, Xcode automatically saves changes to source and project files. This feature requires no
configuration, because Xcode continuously tracks your changes and saves them. You can revert a file to a
previous state with Undo and Revert Document commands.

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

14

You can revert an entire project to a previous snapshot of a known working version with the Restore Snapshot
command. Snapshots make it easy to back up the current version of your project. You create a snapshot by
choosing File > Create Snapshot. You can also set Xcode to automatically create snapshots before you perform
any mass editing operations and as part of a workflow.

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

15

To keep track of changes at a fine-grained level, use the Xcode source control management features. Xcode
supports two popular source control systems: Git and Subversion. You can access remote Git and Subversion
source code repositories, and you can create local Git repositories. Using the Xcode service, available with OS X
Server, you can host Git repositories on your own server.

Relevant Chapter: Save and Revert Changes (page 115).

Integrated Documentation
While you’re coding, Xcode makes detailed technical information available at your fingertips. When you want
it, Quick Help keeps concise API information always in view, and Xcode application help is always close at hand
with step-by-step instructions for performing common Xcode tasks. Xcode includes extensive documentation
for using Xcode, and it provides comprehensive SDK documentation, including programming guides, tutorials,

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

16

sample code, detailed framework API references, and video presentations by Apple engineers. All of these
resources are viewable from the Xcode documentation viewer. As updated documentation becomes available,
it downloads automatically in the background.

Relevant Chapter: Learn More About Xcode (page 124).

App Distribution to Testers and the App Store
Most of your development time is spent on coding tasks, but to develop for the App Store, you need to perform
a number of administrative tasks throughout the lifetime of your app. In addition to Xcode, you’ll use the
Member Center web tool to manage developer program accounts and entitlements, and you’ll use the iTunes
Connect web tool to check the status of your contracts, set up tax and banking information, obtain sales and
finance reports, and manage metadata about the app.

Xcode project configurations help prepare your app for distribution to beta testers and for submission to the
App Store. Submitting your app is a multistep process that begins when you sign into iTunes Connect and
supply necessary product information. In Xcode, you create an archive of your project and submit it to the
store. When your app is approved, you use iTunes Connect to release it by setting the date. (If you are distributing
your Mac app outside the store, you follow a slightly different process.)

About Xcode
At a Glance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

17

Relevant Guide: App Distribution Guide .

See Also
Many of the screenshots used to illustrate this document are taken from theAdventure Xcode project described
in code:Explained Adventure . To explore the Xcode features described in this guide on your Mac, obtain Xcode
from the App Store, then download the Adventure project by clicking either link in this paragraph.

This guide introduces you to the major features and capabilities of Xcode. For a hands-on introduction to using
Xcode, read either Start Developing iOS Apps Today or Start Developing Mac Apps Today . In each document,
you use Xcode to create a simple app, and you learn the basics of programming with Objective-C.

About Xcode
See Also

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

18

Perform your core development tasks in the Xcode workspace window, your primary interface for creating and
managing projects. A project is the main unit of development in Xcode. It includes all the elements needed
to build your app, framework, plug-in, or other software product. It also maintains the relationships between
those elements. For more detail on projects, see A Project Is a Repository of Files and Resources for Building
Apps (page 31).

The workspace window automatically adapts itself to the task at hand, and you can further configure the
window to fit your work style. You can open as many workspace windows as you need.

The components of the workspace window are shown in the following figure.

The workspace window always includes the editor area. When you select a file in your project, its contents
appear in the editor area, where Xcode opens the file in an appropriate editor. For example, in the figure above,
the editor area contains AdventureScene.swift, a swift code file that is selected in the Navigator area on
the left of the workspace window.

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

19

Develop Your App in the Workspace Window

The workspace window displays up to three optional areas used in performing different tasks in the development
lifecycle. Hiding areas not in use can help you focus on your current task. You can hide or show these optional
areas by using the workspace configuration buttons on the far right side of the toolbar:

 Show and hide the navigator area. Use this area for navigating all facets of your project, including
files, symbols, breakpoints, build issues, tests, breakpoints, and build reports. You can also search for any
string in your project.

 Show and hide the debug area. Use this area for viewing variables, interacting with the debugger
console, and controlling the execution of your application.

 Show and hide the utilities area. Use this area to inspect or modify attributes of files, graphical user
interface elements, sprites, and other elements in your project. Also use it to access a library of ready-made
resources. See Access Resources and Inspect Elements in the Utilities Area (page 25).

Develop Your App in the Workspace Window

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

20

Navigate Your Workspace
Access files, symbols, unit tests, diagnostics, and other facets of your project from the navigator area. In the
navigator bar, you choose the navigator suited to your task. The content area of each navigator gives you
access to relevant portions of your project, and each navigator’s filter bar allows you to restrict the content
that is displayed.

Choose from these options in the navigator bar:

 ● Project navigator. Add, delete, group, and otherwise manage files in your project, or choose a file to
view or edit its contents in the editor area.

 ● Symbol navigator. Browse the symbols in your project as a list or hierarchy. Buttons on the left of the
filter bar let you limit the shown symbols to a combination of only classes and protocols, only symbols in
your project, or only containers.

 ● Find navigator. Use search options and filters to quickly find any string within your project.

 ● Issue navigator. View issues such as diagnostics, warnings, and errors found when opening, analyzing,
and building your project.

 ● Test navigator. Create, manage, run, and review unit tests.

Develop Your App in the Workspace Window
Navigate Your Workspace

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

21

 ● Debug navigator. Examine the running threads and associated stack information at a specified point
or time during program execution.

 ● Breakpoint navigator. Fine-tune breakpoints by specifying characteristics such as triggering conditions.

 ● Report navigator. View the history of your build, run, debug, continuous integration, and source control
tasks.

Typing text in the filter bar text input field shows only the items in the content area containing the search
term. Most navigators show buttons on the left side of the filter bar used to further restrict what content is
shown. Some filter bars have an Add button (+) on the left that you use to add an element to the content area.

The button on the left of the filter bar in the Report navigator () is used for interacting with bots. Using Bots
from the Report navigator is covered in more detail in Manage and Monitor Bots from the Report Navigator.

Select files in the content area to view or edit them.

Edit Your Project Files
Most development work in Xcode occurs in the editor area, the main area that is always visible within the
workspace window. The editors you use most often are:

 ● Source editor. Write and edit source code.

 ● Interface Builder. Graphically create and edit user interface files.

 ● Project editor. View and edit how your apps should be built, such as by specifying build options, target
architectures, and app entitlements.

Develop Your App in the Workspace Window
Edit Your Project Files

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

22

When you select a file from the content area of a navigator, Xcode opens the file in an appropriate editor. In
the screenshot, the file iPhoneStoryboard.storyboard is selected in the project navigator, and the file is
open in Interface Builder. Interface Builder is showing both the outline view on the left and the canvas on the
right. For more information, see Build a User Interface (page 61). (The optional utilities and debug areas are
hidden to maximize space for the navigator and editor.)

The following screenshot shows a number of search results appearing in the find navigator’s content area.
One of the results is selected, and its text string appears in the source editor.

Configure the editor area for a given task with the editor configuration buttons on the right side of the toolbar:

 ●

Standard editor. Fills the editor area with the contents of the selected file.

Develop Your App in the Workspace Window
Edit Your Project Files

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

23

 ●

Assistant editor. Presents a separate editor pane with content logically related to content in the
standard editor pane. You can also change the content.

 ●

Version editor. Shows the differences between the selected file in one pane and another version of
that same file in a second pane. This editor works only when your project is under source control.

This screenshot shows an implementation file, APAAdventureScene.m, open in the standard editor pane.
The three optional workspace areas—navigator, debugger, and utilities—are hidden to maximize the editor’s
content display. Within the source code editor, the assistant pane displays the implementation file’s associated
header file, APAAdventureScene.h.

Every editor or assistant editor pane includes a jump bar—an interactive, hierarchical mechanism for navigating
directly to items at any level in your project. The configuration and behavior of the jump bar is customized for
its context. The basic jump bar configuration includes three components:

 ● The related items menu () offers additional selections relevant in the current context, such as recently
opened files or the interface (.h) file for an implementation (.m) file you are editing.

 ● Previous and Next buttons () allow you to step back and forth through your navigation history.

 ● The hierarchical path menu allows you to change what is shown in the editor or assistant editor pane by
navigating to a new item. It is made up of one or more segments depending on what part of the path you
click.

Develop Your App in the Workspace Window
Edit Your Project Files

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

24

Click a segment in the hierarchical path menu to see a pop-up menu of related items. For example, if the
segment identifies the name of the project, you use the jump bar to navigate to and open any file within the
project. If the segment identifies the name of a folder, you can use the jump bar to open a file within the folder.
If the segment identifies the name of a source file, you use the jump bar to show and select a symbol within
the currently open file.

Access Resources and Inspect Elements in the Utilities Area
The utilities area on the far right of the workspace window gives you quick access to these resources:

 ● Inspectors, for viewing and modifying characteristics of the file open in an editor

 ● Libraries of ready-made resources for use in your project

Develop Your App in the Workspace Window
Access Resources and Inspect Elements in the Utilities Area

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

25

The top pane of the utilities area displays inspectors. The bottom pane gives you access to libraries.

Use the inspector bar to choose the inspector best suited to your current task. Two inspectors are always
visible in the inspector bar (additional inspectors are available in some editors):

 ● File inspector. View and manage metadata for the selected file. Typically you will localize storyboards
and other media files and change settings for user interface files.

 ● Quick Help. View details about a symbol, an interface element, or a build setting in the file. For example,
Quick Help displays a concise description of a method, where and how the method is declared, its scope,
the parameters it takes, and its platform and architecture availability.

Use the library bar to access ready-to-use libraries of resources for your project:

 ● File templates. Templates for common types of files and code constructs.

 ● Code snippets. Short pieces of source code for use in your software, such as class declarations, control
flows, block declarations, and templates for commonly used Apple technologies.

 ● Objects. Items for your app’s user interface.

 ● Media. Files containing graphics, icons, sound files, and the like.

Develop Your App in the Workspace Window
Access Resources and Inspect Elements in the Utilities Area

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

26

To use a library, drag it directly to the appropriate area. For example, to use a code snippet, drag it from the
library to the source editor; to create a source file from a file template, drag its template to the project navigator.

To restrict the items displayed in a selected library, type relevant text into the text field in the filter bar. For
example, type “button” in the text field to show all the buttons in the Objects library.

Manage Common Tasks with the Workspace Toolbar
The toolbar at the top of the workspace window provides quick access to frequently used commands. The Run
button builds and runs your products. The Stop button terminates your running code. The Scheme menu
lets you configure the products you want to build and run. The activity viewer shows the progress of tasks
currently executing by displaying status messages, build progress, and other information about your project.

You’ve seen how the editor configuration buttons let you configure the editor area, and you’ve seen how
the workspace configuration buttons hide or show the optional navigator, debug, and utilities areas.

The View menu includes commands to hide or show the toolbar.

Develop Your App in the Workspace Window
Manage Common Tasks with the Workspace Toolbar

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

27

Work in Multiple Tabs or Multiple Windows
Use Safari-style tabs to implement multiple, workflow-specific layouts of the workspace window. For example,
in the screenshot below the active tab is showing the contents of an implementation file
(APAViewController.m) in the source editor. The tab on the right is for the related header file
(APAViewController.h), and the one on the left is for the app storyboard
(iPhoneStoryboard.storyboard.) Clicking a tab makes it the active editor.

The View menu contains commands to show and hide the tab bar. To create a tab, choose File > New > Tab.
To remove a tab, move the pointer to the tab and click its close button.

Develop Your App in the Workspace Window
Work in Multiple Tabs or Multiple Windows

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

28

Create multiple workspace windows by choosing File > New Window. Each tab or window can be customized
independently of the others, for example, by showing and hiding the utilities area with the Hide/Show Utilities

button () in the toolbar.

Develop Your App in the Workspace Window
Work in Multiple Tabs or Multiple Windows

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

29

Apps you create in Xcode require a project, which keeps the necessary files and resources organized. You start
a project by choosing File > New > New Project. Xcode opens a new workspace window and displays a dialog
in which you choose a project template. Xcode provides built-in templates for developing common styles of
iOS and Mac apps. These templates include essential project configuration and files that help you start your
development effort quickly.

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

30

Maintain Your Code and Other Resources in Projects
or Workspaces

View the names of project files in the project navigator. When you select a file in the project navigator, the
file’s contents appear in the appropriate editor or viewer. The screenshot below shows the Adventure project.
An implementation file (APAViewController.m) is selected in the project navigator, and the file’s contents
appear in the source editor.

A Project Is a Repository of Files and Resources for Building Apps
A project contains the elements needed to build one or more apps (or other software products, such as
command-line tools and plug-ins). The project also maintains the relationships among these elements. These
elements include:

 ● References to source code files (including implementation files and header files where appropriate), libraries
and frameworks, image files, and user interface files

 ● Groups, for organizing files in the project navigator

 ● Project-level build configurations

 ● Targets, each of which produces a single app

Maintain Your Code and Other Resources in Projects or Workspaces
A Project Is a Repository of Files and Resources for Building Apps

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

31

By selecting the project name in the project navigator, you open the project editor. You can use the project
editor to specify every aspect of how your apps should be built, from the version of the software development
kit (SDK) to specific compiler options. In this screenshot, the Adventure project is selected in the project
navigator and in the project editor. The project editor displays the Info pane for the Adventure project.

When you create a project, Xcode provides two standard project-level build configurations: debug and release.
These configurations differ mostly in whether they include debug information and in the degree to which each
build is optimized. These two build configurations are probably sufficient for your product development needs.
Most developers never need to change the values of the vast majority of build settings.

To add more build configurations, open the project editor, duplicate one of the project’s existing configurations,
and then modify its settings. For example, you might configure a build that’s fully optimized but that also
includes debug information in order to debug your optimized code.

Maintain Your Code and Other Resources in Projects or Workspaces
A Project Is a Repository of Files and Resources for Building Apps

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

32

Apply App-Specific Settings to a Target
Every project contains at least one target. A target specifies a product to build, such as an iOS or Mac app.
Select a target in the project editor to view and modify the target’s settings. In the screenshot below, the
Adventure iOS target of the Adventure project is selected in the project navigator, and the Adventure iOS target
is selected in the project editor . The project editor displays the General pane for the target.

The General pane for a target shows basic settings that you occasionally check and possibly edit. You typically
assign values for these settings elsewhere during the app development process, for example, in dialogs that
appear when you create a new project.

For an iOS app, the General pane contains target settings for:

 ● The bundle identifier, a string that identifies the app to the operating system and to the App Store

 ● The version number under which to publish the app

 ● The build number, which identifies a particular build of the app

 ● The name of your Apple Developer Program development team

 ● The deployment target, which is the earliest iOS version on which the app runs

 ● The devices for which to build the app

 ● The main user interface file to load when the app launches

 ● The user interface orientations (portrait, upside down, landscape left, landscape right) that the app supports

For a Mac app, the General pane contains target settings for:

 ● The application category, for classifying the app on the Mac App Store

 ● The bundle identifier

Maintain Your Code and Other Resources in Projects or Workspaces
Apply App-Specific Settings to a Target

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

33

 ● The version number

 ● The build number

 ● An option to code sign the app for the Mac App Store, to code sign the app with a developer ID for
distribution outside the Mac App Store, or to leave the code unsigned

 ● The deployment target, which is the earliest OS X version on which the app will run

 ● The icon that OS X uses to identify the app to the user

Specifying debug or release builds is done elsewhere. See Run Your App (page 91).

Add Technology Features to a Target
To add various Apple technologies—such as iCloud, Game Center, In-App Purchase, and Maps—to your app,
select its target in the project editor and click Capabilities. Add a capability by setting a switch to On. Xcode
adds the necessary entitlements file to your project and links the target to the necessary frameworks. In some
cases, Xcode might encounter issues enabling a capability. If so, that information will be displayed in the
information area for that capability.

You can show or hide detail for a capability by clicking the disclosure triangle to the left of the capability name.
For capabilities that are off, this area describes the capability and actions that occur when the capability is
turned on. For capabilities that are on, use this area to view or update any associated configuration and to
identify issues that need fixing.

Maintain Your Code and Other Resources in Projects or Workspaces
Add Technology Features to a Target

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

34

For more information on adding capabilities, see Adding Capabilities.

Add File Type and Service Information to a Target
The Info pane for a target shows you properties associated with your app, file types that your app can create
or open, and for OS X, services provided by your app. Most of the custom target properties are modified in
other parts of the Xcode interface (such as the bundle identifier, version, and build number set in the General
pane.) The screenshot shows the Info pane for the iOS target of the Adventure app.

The Document Types setting specifies the document types you can create and edit in your app, and provides
a custom icon displayed for that document type by iOS or Mac OS.

Add exported and imported UTIs for any file types your app can export or import. Unlike document types,
which are usually unique to your app, UTIs specify general formats like plain text or .png. For example, UTIs
support copying and pasting to and from the clipboard between apps. See Uniform Type Identifiers Reference
for more information and a list supported of types.

The URL Types setting lets you specify custom schemas for exchanging data with other apps by using custom
protocols. For example, some existing schemas include http, mailto, and sms. For more information, see
Using URL Schemes to Communicate with Apps (iOS) or Launch Services Programming Guide (Mac OS) for
more information.

Maintain Your Code and Other Resources in Projects or Workspaces
Add File Type and Service Information to a Target

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

35

Mac OS apps use the Services item to add items that appear in the Services menu. For more information, see
Services Implementation Guide .

Override Build Settings for a Target
A target contains instructions—in the form of build settings and build phases—for building a product. A target
inherits the project’s build settings. Although most developers seldom need to change these settings, you can
override any of the project’s build settings by specifying different settings at the target level. Select a target
in the project editor to modify the target settings in the Info, Build Settings, or Build Phases pane.

Use Workspaces to Work on Related Projects
Workspaces are a collection of projects that help you reduce the complexity of larger applications. Workspaces
have several benefits:

 ● Any project in the workspace has access to all the content from any other project in that same workspace,
including compiled content.

 ● You can set up dependencies between projects so that a single build command builds all required pieces
for the chosen target.

 ● You can include static libraries or modules, either your own or those of a third party.

 ● You can break up large projects into smaller pieces, allowing easier maintenance and sharing of functionality.

Create a workspace by choosing File > New > Workspace. After you create a workspace, you can create new
projects within it and add existing projects to it. After you create the workspace, open the workspace file
instead of the project file.

Convert an existing project into a workspace by choosing File > Save As Workspace. The existing window for
the project is converted to a workspace window for the new workspace.

The screenshot shows an example of a workspace with two Xcode project files. The top project in the navigator
area is a framework called MySharedFramework. The other project file is an app, UsesSharedFramework,
that includes the shared framework. Using a workspace gives the app project access to everything in the shared

Maintain Your Code and Other Resources in Projects or Workspaces
Override Build Settings for a Target

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

36

framework project and makes tasks like debugging much easier. Adding the framework to the list of linked
frameworks for the app creates a dependency between the app and the framework. Xcode checks whether
the framework needs to be built before the app.

For more information on workspaces, see Xcode Workspace, Creating a Workspace, and Adding an Existing
Project to a Workspace.

Close and Reopen a Project or a Workspace
To close a project or workspace, choose File > Close Project or File > Close Workspace. Xcode remembers which
windows you had open and how they were configured, and it restores them when you reopen the project or
workspace.

Maintain Your Code and Other Resources in Projects or Workspaces
Close and Reopen a Project or a Workspace

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

37

You spend most of your development time writing, editing, and debugging code. With features like syntax
correction, code completion, and static code analysis, the Xcode source editor helps you enter code quickly
and accurately. Customizable features like split windows, keyboard shortcuts, and syntax-aware fonts and text
colors allow you to configure the source editor to suit your work style.

To view and edit a source file, select it in the project navigator. The file’s contents appear in the editor area of
the workspace window.

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

38

Write Code in the Source Editor

Fix Errors as You Type
As you type into the source editor, Xcode scans your text. When you make a syntax error, Xcode marks it with
a red underline or a caret. Click the error, and Xcode displays a message describing the issue.

Often, Fix-it offers to repair your error automatically. Select a suggested correction, and press Return to accept
it. In the screenshot, Fix-it suggests inserting the “@” character before the text string. For more information,
see Catching Mistakes with Fix-it.

Write Code in the Source Editor
Fix Errors as You Type

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

39

Drop Code Snippets into Your Files
Use code snippets to enter source text with minimum effort. You can drag a code snippet directly from the
Code Snippet Library into a source file. To access the Code Snippet Library, click the Code Snippet button ()
in the utilities area of the workspace window. The Code Snippet Library provides useful standard snippets,
such as the switch statement snippet shown in the screenshot. To add your own code snippets to the library,
create your own snippets, and add shortcuts, see Source Editor Help .

Write Code in the Source Editor
Drop Code Snippets into Your Files

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

40

Create Source Files from Templates
Use file templates to add files to your project with minimum effort. To access the File Template Library, click
the File Template button () in the utilities area of the workspace window. Create a source file by dragging
its template to the project navigator.

Write Code in the Source Editor
Create Source Files from Templates

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

41

Alternatively, choose File > New File or press Command-N. Xcode brings up the New File dialog, where you
can choose a template for your file. After choosing a template and pressing Next, you name the file and add
it to your project.

Perform Static Code Analysis
Use the static analyzer to find bugs in your code before you even run your app. The static analyzer tries out
thousands of possible code paths in a few seconds, reporting potential bugs that might have remained hidden
or bugs that might be nearly impossible to replicate. This process also identifies areas in your code that don’t
follow recommended API usage, such as Foundation, UIKit, and AppKit idioms.

Write Code in the Source Editor
Perform Static Code Analysis

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

42

To perform static code analysis, choose Product > Analyze. The Xcode static analyzer parses the project source
code and identifies these types of problems:

 ● Logic flaws, such as accessing uninitialized variables and dereferencing null pointers

 ● Memory management flaws, such as leaking allocated memory

 ● Dead store (unused variable) flaws

 ● API usage flaws that result from not following the policies required by the frameworks and libraries the
project is using

The static analyzer reports problems in the issue navigator, available by clicking the Issue Navigator button

in the project navigator bar. Select an analyzer message in the issue navigator to display the associated code
in the source editor. Click the corresponding message in the source editor. Use the pop-up menu in the analysis
results bar above the source code editor to study the flow path of the flaw. Then edit the code to fix the flaw.

For more detail, see Performing Static Code Analysis in Xcode Help .

Speed Up Typing with Code Completion
When you begin typing the name of a symbol, Xcode offers inline suggestions for completing the name. Click
an item in the suggestion list to select it, or use the Up Arrow and Down Arrow keys to change the selected
suggestion. Press Return to accept the suggestion.

When a method or function contains parameters or arguments, code completion includes a placeholder for
each. To move from one placeholder to another, choose Navigate > Jump to Next Placeholder (or Navigate >
Jump to Previous Placeholder). Alternatively, Tab navigates to the next placeholder and Shift-Tab navigates
to the previous one.

For more detail, see Entering Text with Code Completion.

Write Code in the Source Editor
Speed Up Typing with Code Completion

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

43

Split the Editor to Display Related Content
Split the editor pane to see multiple views of the same file or to view multiple related files at once. For example,
you can simultaneously view an implementation file and its header file counterpart. To split the source editor,

open an assistant editor pane by clicking the Assistant Editor button () in the workspace toolbar. The split
can be vertical or horizontal.

Write Code in the Source Editor
Split the Editor to Display Related Content

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

44

To change the orientation of the split, choose View > Assistant Editor, and then choose one of the menu
options. In both of the screenshots above, the navigator and utilities areas are closed to maximize the viewing
area of the source editor.

When you open an assistant editor pane, you can set it to either of two modes: manual or tracking. In manual
mode, you select the file to display by navigating to it in the jump bar. The contents of the assistant editor do
not change as you change the contents of the main editor.

In tracking mode, you select a criterion from a pop-up menu. Criteria include include groupings such as
counterparts, superclasses, subclasses, and siblings. Once you choose a criterion, Xcode lists the appropriate
files in a sub-menu. As you change the file in the main editor, Xcode updates the assistant editor based on the
selected criterion.

Write Code in the Source Editor
Split the Editor to Display Related Content

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

45

To change the mode, select one from the Assistant pop-up menu. (The Assistant pop-up menu is the first item
to the right of the back and forward arrows in the assistant editor jump bar.)

You can further split the assistant editor pane by clicking the Add button () in the top-right corner of the

assistant editor pane. The nearby close button () closes it again.

Write Code in the Source Editor
Split the Editor to Display Related Content

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

46

Open a File Quickly
Choose File > Open Quickly to locate files that define a specified symbol or whose filenames contain a specified
string. Open Quickly searches are case insensitive and are limited to the current project and to the active
software development kit (SDK). From the search results list, double-click the file you want to open.

To open the file in the assistant editor pane, hold down the Option key when you double-click. To open the
file in a separate window, press Option-Shift. To see a dialog letting you specify where the file should open,
press Option-Shift-click.

Use Gestures and Keyboard Shortcuts
Gestures and keyboard shortcuts can simplify and enhance your use of the source editor. Besides the common
Multi-Touch gestures in OS X, these gestures are particularly applicable within the source editor:

 ● A two-finger click opens a contextual menu for the editor (as does Control-click or Left-click with the
mouse).

 ● A two-finger swipe up or down scrolls vertically, and left or right scrolls horizontally.

 ● A two-finger swipe left or right navigates through any files opened in an editor. Swiping left shows the
previous file, and swiping right shows the next file.

Write Code in the Source Editor
Open a File Quickly

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

47

Keyboard sequences serve as shortcuts for many common menu commands in Xcode. For example,
Shift-Command-O invokes the Open Quickly command from the File menu, and Shift-Command-J invokes the
Jump to Definition command from the Navigate menu. Other keyboard shortcuts assist with editing operations.
For example, Control-K deletes every character from the insertion point to the end of the line.

Keyboard shortcuts are established through key bindings, which you can view and modify by choosing Xcode
> Preferences and selecting Key Bindings.

Automate Extensive Changes in Your Code
Xcode offers several approaches to making changes that apply to multiple lines of text.

You can simultaneously modify all the occurrences of a symbol, such as the name of a local variable or parameter,
within a scope. Place the insertion point in the symbol you want to edit. When the disclosure triangle appears,
click it to display the menu, and choose Edit All in Scope. Edit the symbol. As you type new text, all instances
of the symbol change simultaneously.

Write Code in the Source Editor
Automate Extensive Changes in Your Code

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

48

Change instances of a text string in a single file by choosing Find > Find and Replace.

Change instances of a text string in your project or workspace by choosing Find > Find and Replace in Project.
This command displays the find navigator. You can customize the operation—for example, to limit the scope
of the search or to match the case of letters in the string. The find navigator provides a preview that allows
you replace all instances of the string or to accept or reject individual replacements.

Write Code in the Source Editor
Automate Extensive Changes in Your Code

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

49

You can use wildcard string patterns in the search field. To enter a component of a pattern, click the disclosure
triangle on the left of the find string field and choose Insert Pattern. Choose a component from the pop-up
menu of patterns. Xcode inserts the wildcard at the current location of the cursor in the find string.

You can refactor your code to improve its structure, readability, and maintainability without changing its
behavior. A refactoring operation (also called a transformation) is applied to a code fragment or a symbol that
you select in the source editor. You can rename symbols, extract code into methods, create superclasses, move
items up to the superclasses or down to their subclasses, and encapsulate variables throughout your project
files.

Write Code in the Source Editor
Automate Extensive Changes in Your Code

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

50

After selecting the code fragment or symbol you want to refactor, choose Edit > Refactor and then choose the
appropriate refactoring command. A preview pane shows you how each change will appear when applied.
Deselect a file in the leftmost pane of the preview dialog to leave it out of the refactoring operation. You can
edit your source code directly in the preview. Any such edits are shown in the preview and are included in the
refactoring operation.

Display the Definition of a Symbol
Place the pointer over a symbol and Command-click to display the symbol definition. The source editor navigates
to the symbol definition and highlights it. If the definition is in a separate file, the source editor displays that
file. (Alternatively, place the pointer over a symbol and choose Navigate > Jump to Definition.)

Write Code in the Source Editor
Display the Definition of a Symbol

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

51

Place the pointer over a symbol, and Option-Command-click to display its definition in the assistant editor
pane, as illustrated for the APALoadFramesFromAtlas function in the screenshot. This approach lets you
keep the symbol in view as you inspect its definition.

Write Code in the Source Editor
Display the Definition of a Symbol

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

52

Examine the Structure of Your Code with Code Folding
You can more easily focus your attention on a particular method or function in source code by hiding the other
parts of the source code. Choose Editor > Code Folding > Fold Methods & Functions. Navigate to the method
you want to unfold and double-click the Ellipsis button to unfold the method. The screenshot shows the
configureConnectedGameControllers method unfolded.

Move the pointer into the focus ribbon on the left edge of the editor to display a scope—such as the for
statement in the screenshot—in a focus box. Additional scopes are indicated by degrees of shading in the
code.

For more detail, see Folding and Unfolding Source Code.

Match Pairs of Braces, Parentheses, and Brackets Automatically
Xcode helps you balance delimiters automatically. For example:

 ● Position the pointer over the focus ribbon on the left edge of the source editor. Xcode highlights the scope
at that location, as shown in the previous screenshot.

 ● Type an opening brace. Xcode automatically inserts a closing brace after you enter a line break.

 ● Type a closing brace or other delimiter. Xcode briefly highlights its counterpart.

 ● Use the Right Arrow key to move the insertion point past a closing delimiter. Xcode briefly highlights its
counterpart.

Write Code in the Source Editor
Examine the Structure of Your Code with Code Folding

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

53

 ● Choose Editor > Structure > Balance Delimiter. Xcode selects the text surrounding the insertion point,
including the nearest set of enclosing delimiters.

 ● Double-click any delimiter. Xcode selects the text enclosed by the delimiter and its counterpart.

For more detail, see Matching Pairs of Braces, Parentheses, and Brackets.

Choose Syntax-Aware Fonts and Text Colors
Xcode parses code based on the language, and it assigns a syntactic label to each token or string—for example,
each comment, keyword, and class name defined in the project. Xcode assigns a color and font to each syntactic
type to make it easier for you to read the code. You can select from several font and color themes by choosing
Xcode > Preferences and then selecting Fonts & Colors. For example, the Presentation theme increases the
font sizes so that the text is easier to read when projected on a screen. You can also create your own custom
font and color themes.

Customize Editing and Indenting Options
You can change source editing and indenting settings to suit your preferences. Choose Xcode > Preferences,
and select Text Editing to modify options such as these:

 ● Display line numbers in the source editor gutter.

Write Code in the Source Editor
Choose Syntax-Aware Fonts and Text Colors

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

54

 ● Automatically insert closing braces as you type.

 ● Suggest code completions while you enter code.

 ● Use spaces or tabs for an indent.

 ● Soft-wrap lines.

 ● Perform syntax-aware indenting.

Look Up Documentation for a Symbol
Find concise reference documentation for a symbol, such as a method or property, by placing the insertion

point in the symbol. Click the Quick Help button () in the inspector pane toolbar. If the inspector pane is
not open, in the main toolbar click the button to show the navigator in the workspace configuration button
set. Quick Help for that symbol appears in the utilities area.

The information includes links to complete reference documentation for the symbol, the header file where the
symbol is declared, related programming guides, and related sample code. (To view summary information in
a pop-up window—the declaration, a description of the symbol, any return value, its release availability, header
file, and a link to its related reference document—Option-click the symbol.)

Write Code in the Source Editor
Look Up Documentation for a Symbol

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

55

Click a link in Quick Help, and Xcode opens a separate Xcode document viewer window. The Xcode document
viewer provides access to information without taking your focus away from the file you’re editing.

Write Code in the Source Editor
Look Up Documentation for a Symbol

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

56

The document viewer delivers in-depth programming guides, tutorials, sample code, and video presentations
by Apple engineers, in addition to detailed framework API references. From a class reference, click “More related
items” near the top of the viewer for links to additional documents relevant to your programming task.

Write Code in the Source Editor
Look Up Documentation for a Symbol

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

57

Use the search field in the toolbar to locate additional information about the API or programming concept.

To include a link to the document in a message, click the Share button () and choose Email Link or Message.
You can open the document in Safari in HTML or PDF format from this menu. For a sample code project, click
Open Project at the top of the window to download the project and open it in Xcode.

Write Code in the Source Editor
Look Up Documentation for a Symbol

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

58

Find Help for Using the Source Editor
Step-by-step instructions for performing common source editor tasks are available directly in Xcode. Control-click
anywhere in the source editor to see a short list of the most common operations. Choose Show All Help Topics
to see all help articles for the source editor. Select a task, and a help article appears in the Xcode documentation
viewer window.

Write Code in the Source Editor
Find Help for Using the Source Editor

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

59

Xcode Help articles are available from shortcut menus throughout Xcode. Control-click in any of the main user
interface areas to see a list of help articles available for that area.

Write Code in the Source Editor
Find Help for Using the Source Editor

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

60

You create your app’s user interface in Interface Builder. Select a user interface file in the project navigator,
and the file’s contents open in Interface Builder in the editor area of the workspace window. A user interface
file has the filename extension .storyboard or .xib. An xib file usually specifies one view controller or menu
bar. A storyboard specifies a set of view controllers and segues between those controllers. Unlike an xib, a
storyboard can contain all of the visual components of your user interface. Default user interface files are
supplied by Xcode when you create new projects from its built-in templates.

The contents of .xib and .storyboard files are stored by Xcode in XML format. At build time, Xcode compiles
your .xib and .storyboard files into binary files known as nibs . At runtime, nibs are loaded and instantiated
to create new views.

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

61

Build a User Interface

To add user interface elements, drag objects from the utilities area onto the Interface Builder canvas, where
you arrange the elements, set their attributes, and establish connections between them and the code in your
source files. As you lay out your app’s user interface elements in Interface Builder, you can write the code that
implements their behavior in the assistant editor.

For more detail on the process of building a user interface, and creating and configuring interface builder files,
see Interface Builder Help .

Build a User Interface

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

62

Add User Interface Elements from the Object Library
Interface Builder has two major areas: the dock (on the left) and the canvas (on the right). The dock lists the
objects contained in the user interface file. The canvas is where you lay out these objects in your app’s user
interface.

The outline view in the dock shows all the objects nested inside higher-level objects.

Build a User Interface
Add User Interface Elements from the Object Library

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

63

For xib files, you can display the high-level objects in an icon view instead of the outline view by clicking the

Hide and Show Document Outline control on the lower left of the interface builder canvas ().

In storyboard files, the top level items in the outline view correspond to top level view controllers, or scenes,
on the canvas. Storyboard files do not show an icon view when the outline view is hidden. Each scene on the
storyboard has a high-level object view on the canvas as shown below. Starting from the left, the items in the
icon view correspond to the scene, the first responder in the scene, and the exit segue for that scene. For more
information on scenes, see Design the User Interface of Your App with Storyboards (page 73).

Build a User Interface
Add User Interface Elements from the Object Library

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

64

To add an object to your app’s user interface, open the utilities area for the workspace window by clicking
(one of the workspace configuration buttons in the toolbar.) Select the Object Library from the library pane
by clicking the Object button in the library bar. Click the icon representing the object, and then drag it from
the library, to either the outline view in the dock or onto the canvas. The screenshot shows dragging a View
Controller onto the canvas.

As you add objects to Interface Builder, you resize them by their handles and reposition them by dragging. As
you move items, dashed blue lines help you align and position the item within the view.

Build a User Interface
Add User Interface Elements from the Object Library

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

65

Above the library bar in the utilities area are the Interface Builder inspectors. You use these inspectors to specify
some of the interface objects’ appearance and behavior. In the screenshot below, the Attributes Inspector
button() is used to specify the button type Custom.

For more help with adding objects and other items, see Interface Builder Object and Media Help .

Lay Out User Interface Objects for Automatic Resizing and
Positioning
Auto Layout enables your app to adapt to different window sizes, screen sizes, and device orientations. You
do this by defining relationship constraints between the elements of your user interface. For example, center
an image horizontally in a storyboard scene. As the user rotates the iOS device, the image remains horizontally
centered in both landscape and portrait orientations of the device.

With Auto Layout constraints governing the layout, the objects in your user interface automatically resize and
reposition themselves whenever:

 ● The user changes the screen orientation of an iOS device

 ● The user resizes a window in a Mac app

 ● Content dimensions change (for example, when the length of a text string changes in a label or button)

Build a User Interface
Lay Out User Interface Objects for Automatic Resizing and Positioning

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

66

When you Control-drag between two user interface objects, Interface Builder presents you with a list of
appropriate constraints. Add constraints to your objects by choosing from this list. The screenshot shows the
result of Control-dragging from the main logo image view to the main view of the controller. The pop-up menu
shows two constraints between the the image view and its container. "Top Space to Container” is a constraint
between the top of the image view and the top of the container. The other horizontally centers the image
view in its container.

Build a User Interface
Lay Out User Interface Objects for Automatic Resizing and Positioning

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

67

To see the constraints for an object, select the object from the outline view in the Interface Builder dock or
select the object on the canvas. Constraints are represented by solid blue lines. You can view a list of constraints

by selecting the Size inspector ().

The top part of the constraints section shows a graphical representation of the types of constraints for the
selected object. Each blue horizontal or vertical line indicates that there are one or more constraints of that
type. Selecting one or more lines filters the list to constraints that match the selected types.

Build a User Interface
Lay Out User Interface Objects for Automatic Resizing and Positioning

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

68

View and edit a constraint in the inspector by selecting the constraint on the canvas or double-clicking the
constraint in the Size inspector. You can also double-click a constraint to show a pop-up editor with the most
frequently edited attributes.

There are more ways to add and edit constraints, including using the buttons along the bottom right of the
canvas (). For more information on using Auto Layout and constraints see Auto Layout Help .

Connect User Interface Objects to Code
You write the code that implements the behavior of your user interface objects. Your code communicates with
user interface objects through action and outlet connections.

Create an action connection when you need to send a message from a control to your code. A control is a user
interface object that causes instant actions or visible results when the user manipulates the object. When the
user clicks a button, for example, the button sends an action message telling your code to execute an appropriate
action. Text fields, sliders, and switches are examples of commonly used controls in iOS; checkboxes, scroll
bars, and text fields are commonly used controls in Mac OS.

Build a User Interface
Connect User Interface Objects to Code

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

69

Create an outlet connection when you need to send a message from your code to a user interface object. The
object can be a control or any other object defined in your storyboard or xib file, such as a label, progress
indicator, or map view. When your code determines that a button should disappear, for example, your code
sends a message through an outlet telling the button to hide itself.

The connections are instantiated after the view controller is instantiated but before it has appeared. For more
information, see Resource Management in View Controllers, Target-Action, and Target-Action.

Note: As of iOS 8.0, connections are no longer guaranteed to be instantiated after completing the
call to awakeFromNib.

Send Action Messages from a Control to Your Code
Whenever the user activates a control, such as by tapping it, the control should send a message instructing
your code to perform some action. The easiest way to configure a control to send an action message to your
code is by Control-dragging from the control in Interface Builder to your object’s implementation file.

With Interface Builder open in the standard editor pane, select the control you want to configure, and click

the Assistant Editor button () in the workspace toolbar. The assistant editor opens your object’s
implementation file.

Control-drag from the control in Interface Builder to the implementation file. (In the screenshot, the assistant
editor displays the implementation file of the view controller for the Warrior button.) Xcode indicates where
you can insert an action method in your code.

Build a User Interface
Connect User Interface Objects to Code

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

70

Release the Control-drag. The assistant editor displays a Connection menu. In this menu, type the name of the
action method (chooseWarrior in the screenshot below), and click Connect.

In the implementation file, Xcode inserts a skeletal definition for the new method, as shown below. The
IBAction return type is a special keyword indicating that this instance method can be connected to your
storyboard or xib file. Xcode also configures the control to call the method when the selected event occurs.
As a result, the method gets invoked whenever the control receives an action message.

Build a User Interface
Connect User Interface Objects to Code

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

71

To this skeletal definition, add the source code that implements the action method. Whereas activation of the
control is implemented by the system, you implement the control’s behavior. In the screenshot below, an
action method starts a new game when the user clicks the Warrior button.

Send Messages to a User Interface Object Through an Outlet
To enable your code to send messages to a user interface object (telling a label to display a text string, for
example, or telling a button to appear or disappear), connect the user interface object to an outlet in your
code. The easiest way to make an outlet connection is to Control-click-and-drag from a user interface object
on the canvas to the implementation or header file. For example, to create an outlet in your view controller
and connect a button to that outlet, Control-drag from the button in Interface Builder to the view controller’s
implementation file in the assistant editor. Xcode indicates where you can insert an outlet declaration in your
code.

Build a User Interface
Connect User Interface Objects to Code

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

72

Release the Control-drag. The assistant editor displays a Connection menu. From this menu, choose Outlet,
type the name of the outlet (warriorButton in the screenshot below), and click Connect.

Interface Builder adds the declaration for the outlet to the class. (Outlets are defined as IBOutlet properties.
The IBOutlet keyword tells Xcode that this property can be connected to your storyboard or xib file.)

For more help making connections and establishing cocoa bindings, see Interface Builder Connections Help .

Design the User Interface of Your App with Storyboards
You use a storyboard to graphically lay out the user’s path through your iOS or Mac app. Use Interface Builder
to specify your user interface in terms of:

 ● Scenes

 ● Segues between scenes

 ● Controls used to trigger the segues

Build a User Interface
Design the User Interface of Your App with Storyboards

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

73

A scene represents an onscreen content area. On iPhone and iPod touch, a screen generally contains a single
scene. On iPad and Mac, a screen can be composed of more than one scene. A segue represents the transition
from one scene to the next scene, such as when one scene slides over another.

The screenshot shows the default storyboard for an iOS project that you create in Xcode with the Master-Detail
Application template. This storyboard contains three scenes and two segues. The leftmost scene represents a
navigation controller, which manages user navigation between the master and detail scenes. When working
from this template, add additional scenes as necessary by dragging view controllers from the Object Library

to the canvas and configuring the view controller with the Identity inspector (). Drag objects from the object

library to lay out each scene. Configure the objects and the segues with the Attributes inspector ().

Build a User Interface
Design the User Interface of Your App with Storyboards

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

74

Your master scene might, for example, contain a table listing multiple items. Each item in the master scene
has a corresponding detail scene that provides additional information about the item. The navigation controller
provides the Back button that returns the user to the master scene from all detail scenes.

For more information about storyboards, see Storyboard Help .

Adapt to Multiple iOS Screen Sizes and Orientations with Size Classes
Size Classes enable you to use one storyboard for all different sizes of screens. You build your interface as it
will look on most devices, and then update only the objects that need to change when the available screen
size changes.

A size class identifies a relative amount of display space for the height and width. The size can be compact or
regular for either height or width. Examples of compact are the width of an iPhone screen in portrait and the
height of the screen in landscape. Examples of regular are the height of an iPhone in landscape, and both the
width and height of an iPad screen. The specific number of points does not matter, only the relative amount
of available space.

Because most of your interface is probably the same for compact or regular, there is an additional size class,
any . You can lay out most of your interface elements for any width and height, and then lay out any parts of
the interface that change for a compact or regular size on either axis.

The size class aware attributes are:

 ● The constant for a constraint

Build a User Interface
Adapt to Multiple iOS Screen Sizes and Orientations with Size Classes

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

75

 ● A Boolean value indicating whether a constraint is installed in the view hierarchy

 ● A Boolean value indicating whether a view is installed in the view hierarchy

 ● The font for a text label, field, text view, or button

Some of the user interface changes enabled by modifying these attributes include:

 ● Changing the size or position of a view

 ● Adding or removing views

 ● Adding or removing sets of constraints

 ● Changing the font in labels, fields, text views, and buttons

Note that if a view or constraint is not installed in the current size class, it is still allocated. Any reference to
that view or constraint returns a valid object. Views will not have a superview. If you uninstall a view, Xcode
uninstalls all related constraints.

Enable size classes for your storyboard by selecting the storyboard in the project navigator, showing the File
inspector, and selecting the Use Size Classes checkbox. Xcode will ask whether you want to convert the
storyboard. Turning on size classes also turns on Auto Layout.

Build a User Interface
Adapt to Multiple iOS Screen Sizes and Orientations with Size Classes

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

76

After you enable size classes, Xcode displays all of your top level view controllers on the canvas as squares.
There is also a size class control () at the bottom of the canvas in the center. The control shows the
current size class for the width (w) and height (h). In this case, it is any/any.

To change size classes, click the size class control. In the pop-up that appears, move your mouse to the quadrant
in the pop-up for the horizontal and vertical size classes you want.

Build a User Interface
Adapt to Multiple iOS Screen Sizes and Orientations with Size Classes

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

77

After you choose a new size class, all of the view controllers are resized to reflect the new size class. The bottom
bar is shown in blue to remind you that you are no longer editing any/any.

Changes you make to constraints, views, and fonts in a specific size class, are specific for that class. To uninstall
a constraint or view, select the constraint or view and press Command-Delete. When you turn off a view, you
usually want to turn off all the constraints attached to that view.

For more help on how to see what is active in a particular size class, and for other ways to work with objects,
see Size Classes Design Help .

Find and Replace Strings
You can find and replace strings in storyboards and xib files using the built in find commands. This includes
finding a string in the storyboard or xib file open in Interface Builder and project wide searches.

For more information on how to search in Interface Builder, see Find and Replace Strings.

Build a User Interface
Find and Replace Strings

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

78

Look Up Documentation for an Object
You can find concise class reference documentation for a user interface object without taking your focus away
from Interface Builder. With a file open in Interface Builder, open the utilities area by clicking the right button

(

TB_ViewUtilities.eps
Xcode Basic Help
Apple, Inc.
TB_ViewUtilities.tif reduced to 33.33%

) in the view selector in the toolbar. Select the Quick Help button () in the inspector bar. In Interface
Builder, click the object about which you want information. Documentation appears in the inspector pane of
the utilities area.

For complete reference information about the object, click the title of the reference document listed in Quick
Help. The reference document opens in the documentation viewer window. You can also open relevant
programming guides, sample code, and other related documents by clicking their titles in Quick Help.

Build a User Interface
Look Up Documentation for an Object

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

79

For additional information about settings you configure in the inspectors, move the pointer over a control in
an inspector. A help tag appears.

Creating and Rendering Custom View Classes on the Canvas
You can render custom view classes in Interface Builder at design time. You can also add properties from your
custom view class to the Attributes inspector.

Build a User Interface
Creating and Rendering Custom View Classes on the Canvas

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

80

For example, you can add a view class that draws a frame with properties for the color and width of the frame.
By following the steps in Creating a Custom View That Renders in Interface Builder the view will draw in Interface
Builder and update as the attributes are changes as shown below.

Build a User Interface
Creating and Rendering Custom View Classes on the Canvas

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

81

Find Help for Using Interface Builder
Step-by-step instructions for performing common Interface Builder tasks are available directly in Xcode.
Control-click anywhere on the Interface Builder canvas to see a short list of the most common operations.
Choose Show All Help Topics to see all help articles for the source editor.

Because the Control-click key combination is used by Interface Builder to make connections, you must
Control-click on the canvas—not on any object in the user interface—to get the shortcut menu with the list
of help articles.

Build a User Interface
Find Help for Using Interface Builder

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

82

Select a task, and a help article appears in the Xcode documentation viewer window.

Build a User Interface
Find Help for Using Interface Builder

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

83

To help you create and manage user interface elements for your app, Xcode offers several tools in addition to
Interface Builder.

You create many images for your app, including icons, custom artwork, and the launch screens for different
iOS devices. Some of these images are required for App Store submission. The asset catalog helps you manage
them.

With the particle emitter editor, you can enhance your app by adding animation effects involving moving
particles such as snow, sparks, and smoke. These effects are especially useful in games for iOS and Mac.

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

84

Add Icons, Images, and Effects

For Mac apps, the Scene Kit editor helps you work with scenes created in 3D authoring tools and exported as
Data Asset Exchange (DAE) files. For more detail, see the Scene Kit Programming Guide .

Add App Icons and Launch Images
Create app icons for all of the operating system versions and devices that your app supports. iOS apps and
Mac apps require different types of icons. For either platform, add the required versions of your app icons to
an asset catalog in Xcode.

For an iOS app, create an icon to be displayed on a device’s Home screen and in the App Store. Xcode doesn’t
include graphics tools for creating icons; use a graphic design app. Create several different versions of the icon
for use in different situations. Your iOS app can include a small icon (to use when displaying search results)
and a high-resolution icon (for devices with Retina displays). If your iOS app’s target is universal, you also create
versions of the icon for iPad and iPhone devices.

For a Mac app, create a set of icons, consisting of pairs of icons (standard and high resolution) for each icon
size, in pixels: 16 x 16, 32 x 32, 128 x 128, 256 x 256, and 512 x 512. The Finder uses these icons to represent
your app to the user.

Work with Image Assets in the Asset Catalog
When you create a new project, Xcode creates an asset catalog named Images.xcassets. Select the asset
catalog from the project navigator, and Xcode opens the catalog in the editor area.

Add Icons, Images, and Effects
Add App Icons and Launch Images

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

85

The asset catalog contains a list of image sets. Each image set, such as AppIcon in the screenshot, contains all
the versions of an image that are necessary to support various devices and scale factors. You can add icon
images to your app by dragging them to the appropriate cell in the icon set grid.

You can create additional image sets, such as for buttons and other controls in your app. To create an empty
image set or to import images into a new set, click the Add button (+) at the bottom of the image set list.

Create and Set the iOS Launch Images or Launch Screen File
A launch screen is displayed while your app is launching on iOS. The launch screen is displayed as soon as the
user taps your app icon, and it stays on the screen until your main interface is displayed. If your app is running
on iOS 8 or later, the system uses a launch screen from a xib file and sizes it appropriately for the screen. For
deployment targets prior to iOS 8, you add a set of launch images to an asset catalog for each of the possible
screen sizes.

New projects are created with a launch screen file called LaunchScreen.xib. Alternately, you can create a
new launch screen file using File > New, selecting the User Interface category, and choosing a file type of
Launch Screen. The launch screen uses size classes to adapt to different screen sizes and orientations, see
Adapt to Multiple iOS Screen Sizes and Orientations with Size Classes (page 75) for more information.

Because the launch screen is shown before your app is running, you can only use a single root view of type
UIView or UIViewController. You are also limited to UIKit classes that do not require updating. For more
information, see Creating a Launch Screen File.

Add Icons, Images, and Effects
Add App Icons and Launch Images

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

86

To set the launch screen, open the General information tab for your target, and select the launch screen file
from the pop-up menu.

For more help icons, launch images, and the asset catalog, see Asset Catalog Help .

Create and Set iOS Launch Images for iOS 7 and Earlier
You can easily capture screenshots for launch images on a device. On the device, configure the screen the way
you want it to appear. Then press the device Lock and Home buttons simultaneously. Your screenshot is saved
in the Saved Photos album in the Photos app. Copy the screenshot from the device to your Mac. You can use
the iPhoto app, for example, to import the screenshot from the device and then export the screenshot to your
Mac as a PNG file.

To set the screenshot as a launch image, select the asset catalog file in the project navigator, and select the
LaunchImage set. Drag your screenshot to the appropriate cell in the grid.

For more information on help icons, launch images, and the asset catalog, see Asset Catalog Help .

Add Particle Emitter Effects
Especially useful for developers of iOS and Mac games, Sprite Kit provides a graphics rendering and animation
infrastructure. This infrastructure includes particle emitters. Particle emitters can range from a single image
that barely moves, to thousands of small particles flying across the screen. You can use particle emitters to
simulate fire, rain, smoke, snow, sparks, and other animated effects.

Xcode provides eight particle emitter templates and an editor for manipulating the appearance and behavior
of particles.

Add Icons, Images, and Effects
Add Particle Emitter Effects

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

87

Create a Sprite Kit–enabled game from the New Project template in Xcode, or use the General pane in the
project editor to add the Sprite Kit framework to an existing target. To add a particle emitter to your project,
choose File > New > File, and then choose Resource > SpriteKit Particle File.

Select the particle template from the drop-down menu, and click Next. Enter a name for the emitter in the
Save As field. Select the checkbox associated with your project in the Targets area. Xcode creates a file with
the extension .sks.

Add Icons, Images, and Effects
Add Particle Emitter Effects

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

88

Select your particle emitter file in the project navigator, and Xcode opens the file in the particle emitter editor.

Modify the look and feel of the particles with the particle emitter inspector (). For example, you can change
the rate at which particles are created, what a particle looks like, and how it acts after it is created. Changes
made to the inspector take effect immediately and can be viewed in the editor.

For more detail, see the Particle Emitter Editor Guide .

Add 3D Scenes to Your App
Scene Kit is a 3D-rendering framework for iOS and Mac apps. Sprite Kit supports the import, manipulation, and
rendering of 3D assets without requiring advanced 3D graphical programming skills on your part. With the
Scene Kit editor, you can preview 3D scenes, inspect them for information needed for your source code, and
adjust scene object parameters to enhance and fine-tune the rendering for your app.

To import a digital asset exchange (DAE) file into the project, use the project navigator. Select a folder in which
you want to save the file. Choose File > Add Files, select the file, and click Add. To browse the 3D scene in
Xcode, select the DAE file in the project navigator. Xcode opens the file in the Scene Kit editor.

To preview the scene and run animations, use the controls in the Scene Kit editor’s main area. Press the Play
button to play an animation. Click the Pause button to pause the animation, and drag the slider to scroll
through it. Use the trackpad or mouse to manipulate the point of view.

Add Icons, Images, and Effects
Add 3D Scenes to Your App

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

89

The inspectors in the utilities area allow you to view and edit information about the node in the scene graph
list or the object in the entities list. For example, with the nodes attributes inspector, you can adjust camera,
light, or geometry attributes, and with the materials inspector, you can adjust many settings on a material and
its properties, such as by selecting a lighting model for it and colors and textures for its contents.

Find More Help
See Asset Catalog Help , Particle Emitter Editor Guide , and SceneKit Editor Help .

Add Icons, Images, and Effects
Add 3D Scenes to Your App

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

90

To build and run your iOS or Mac app, choose a scheme and a run destination in the workspace toolbar, and
click the Run button. Clicking the Stop button causes your app to quit.

If you are running an iOS app, Xcode launches it either in iOS Simulator or on an iOS device connected to your
Mac. If you are running a Mac app, Xcode launches it directly on your Mac.

Choose a Scheme to Build Your App
A scheme is a collection of settings that specify the targets to build for a project, the build configuration to
use, and the executable environment to use when the product is launched. When you open an existing project
(or create a new one), Xcode automatically creates a scheme for each target. The default scheme is named
after your project and includes settings to perform five actions:

 ● Run the app.

 ● Run unit tests against the target.

 ● Profile the app’s performance characteristics.

 ● Perform static analysis on the code.

 ● Archive the app for distribution, such as sending to testers or submitting to the App Store.

Each action includes building the app as an executable product. To choose the scheme, use the Scheme menu
in the Xcode workspace toolbar. (You’ll use the Scheme menu to choose a destination, too.)

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

91

Run Your App

Choose a Destination to Run Your App
When you build an app, the destination determines where the app runs after it’s built. For Mac apps, the
destination is the Mac on which the app is built. For iOS apps, the destination can be a provisioned iOS device
connected to the Mac, or iOS Simulator. Installed as part of the Xcode tools along with the iOS SDK, iOS
Simulator runs on your Mac and simulates an iPhone or iPad environment.

The Scheme menu lets you select a combination of scheme and destination, but the two settings are distinct.
A scheme does not include a destination. In the screenshot above, Adventure iOS is selected as the scheme,
and the iPhone Retina (4-inch) simulation environment is selected as the destination. As a result, the Adventure
iOS scheme builds an iOS executable that runs on a simulated iPhone in OS Simulator. As shown below, the
same scheme could be used to run the app on a different destination, such as a simulated iPad or a connected
iOS device.

Run Your App
Click the Run button in the workspace toolbar to compile, link, and execute your code. If the app builds
successfully, Xcode runs it and starts a debugging session.

Run Your App
Choose a Destination to Run Your App

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

92

Depending on your destination, Xcode launches your iOS app either in iOS Simulator or on a connected iOS
device.

Run Your App
Run Your App

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

93

Xcode launches a Mac app on your development Mac.

Xcode displays any errors or warnings it encounters in the issue navigator, available by clicking in the
navigator bar. If there are errors during the compilation or link phase, Xcode doesn’t run your code.

Run Your App in iOS Simulator
iOS Simulator enables you to simulate several iPhone and iPad devices and several versions of the iOS operating
system. You interact with iOS Simulator by using the keyboard and trackpad to emulate taps, device rotation,
and other actions. For example, you can use the Hardware menu in iOS Simulator to:

 ● Rotate the simulator to the left and right

 ● Simulate a user shaking the device

 ● Send the frontmost app a simulated low-memory warning

Run Your App
Run Your App

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

94

As a preliminary tool for use before testing your app on devices, iOS Simulator allows you to prototype and
test builds of your iOS app during the development process. Although you can test your app’s basic behavior
in iOS Simulator, the simulator is limited as a test platform. While developing your app, it is essential that you
run and test it on connected iOS devices.

For more detail on using the simulator, see iOS Simulator User Guide .

Run Your App on a Connected Device
To run your iOS app on a device (an iPad, iPhone, or iPod touch) during development, four things are required:

 ● The device is connected to your Mac.

 ● You are a member of an Apple developer program.

 ● You have a valid signing identity for the developer program.

 ● The device is provisioned for development use by that developer program.

Xcode guides you through any missing parts of these requirements and can usually do the work of obtaining
a signing identity and device provisioning profile.

To run your iOS app on a device (an iPad, iPhone, or iPod touch) during development, the device must be
connected to your Mac, and the device must be provisioned for development by Apple. If your Mac app uses
certain Apple technologies—such as iCloud, Game Center, and In-App Purchase—your Mac must be provisioned.

Apple implements an underlying security model to protect user data and to protect your app from being
modified and distributed without your knowledge. Throughout the development process, you create assets
and enter information that Apple uses to verify the identify of you, your devices, and your apps. These assets
include provisioning profiles, which identify your development devices.

To obtain a provisioning profile for a device, you need an Apple Developer Program membership and associated
signing identity. For detailed information on doing this, see App Distribution Quick Start .

Choose Your Device for the Run Destination
When you plug the device into your Mac, the device’s name and the iOS release it is running appear as a
destination in the Scheme menu. Choose your device as the destination, and then click the Run button to build
and run your app on the device.

Run Your App
Run Your App

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

95

Create Custom Simulator Configurations
Choose Window > Devices to open the Devices organizer. Click the Add button (+) in the bottom-left of the
organizer window. In the dialog that appears, type in a name for your custom simulator configuration, choose
a device type, and then choose an iOS version. Click Create and your new custom simulator configuration is
added to the Simulator list. By default, the new configuration appears in the Run Destinations menu.

Show Simulators or Devices in the Run Destinations Menu
Choose Window > Devices. In the Devices organizer, select the item you want to add or remove from the target

menu. Choose the Configuration button () in the bottom-left of the organizer window. Choose Show in Run
Destinations Menu. A checkmark next to that menu item indicates that the simulator or device will be shown
in the Run Destinations menu.

Run Your App
Run Your App

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

96

Edit, Create, and Manage Schemes
To edit a scheme, choose Edit Scheme from the Scheme menu. The left column of the scheme configuration
dialog lists the actions that the scheme can perform. You can modify settings for each action. In the screenshot,
the Run action is modified to simulate the location of Mexico City when Xcode launches the app.

You can edit a scheme so that it performs such actions as:

 ● Building multiple targets

 ● Executing scripts before or after any action

 ● Sending emails before or after any action

 ● Running with memory management diagnostics

Run Your App
Edit, Create, and Manage Schemes

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

97

 ● Producing either a debug or release build for any action, such as for the Run action in the screenshot
below

A convenient way to create a new scheme is to click the Duplicate Scheme button. This button uses the active
scheme as a template for you to rename, edit, and save.

If you create schemes, you can manage them by clicking the Manage Schemes button in the scheme
configuration dialog or by choosing Manage Schemes from the Scheme menu as shown in the screenshot
below. You can rename or reorganize how schemes appear in the Scheme menu. You can also specify whether
a scheme should be displayed in the menu, where a scheme is stored in the project or workspace, and whether

Run Your App
Edit, Create, and Manage Schemes

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

98

a scheme should be shared, such as with team members accessing a project from a source code repository.
You can click the Autocreate Schemes Now button to make Xcode create schemes for any targets that don’t
have them.

Get step-by-step instructions for creating, editing, and managing schemes by pressing Control-click anywhere
in the scheme configuration dialog, or see Scheme Editor Help .

Run Your App
Edit, Create, and Manage Schemes

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

99

After you click the Run button in the workspace toolbar and your app builds successfully, Xcode runs your app
and starts a debugging session. You can debug your app directly within the source editor with graphical tools
such as data tips and Quick Look for the value of variables.

The debug area and the debug navigator let you inspect the current state of your running application and
control its execution.

Creating a quality app requires that you minimize your application’s impact on your users’ systems. Use the
debug gauges in the debug navigator to gain insight into your app’s resource consumption, and when you
spot a problem, use Instruments to measure and analyze your app’s performance.

If you are developing an iOS app, use iOS Simulator to find major problems during design and early testing.

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

100

Debug Your App

You can configure Xcode to help you focus on your debugging tasks. For example, when your code hits a
breakpoint, you can make Xcode automatically play an alert sound and create a window tab named Debug,
where Xcode displays the debug area, the debug navigator, and your code at the breakpoint.

Control Execution and View State Information
Xcode lets you step through your code line by line to view your program’s state at a particular stage of execution.
Use the debug area to control the execution of your code, view program variables and registers, view its console
output, and interact with the debugger. You can also use the debug area to navigate the OpenGL calls that
render a frame and to view the rendering-state information at a particular call.

Display the debug area by clicking the center button () in the view selector in the workspace window
toolbar.

You can suspend the execution of your app by clicking the pause button (which toggles between to pause

and to continue) in the debug area toolbar. To set a breakpoint, open a source code file and click the gutter

next to the line where you want execution to pause. A blue arrow () in the gutter indicates the breakpoint.
For more information on breakpoints, including how to set breakpoint actions and the different kind of
breakpoints, see Breakpoint Navigator Help .

Debug Your App
Control Execution and View State Information

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

101

When your app is paused, the currently executing line of code is highlighted in green. You can step through

execution of your code using the Step Over (), Step Into (), and Step Out () buttons located in the bar
at the top of the Debug area. Step over will execute the current line of code, including any methods. If the
current line of code calls a method, step into starts execution at the current line, and then stops when it reaches
the first line of the called method. Step out executes the rest of the current method or function.

When execution pauses, the debug navigator opens to display a stack trace. Select an item in the debug
navigator to view information about the item in the editor area and in the debug area. As you debug, expand
or collapse threads to show or hide stack frames.

Hover over any variable in the source code editor to see a data tip displaying the value for the variable. Click

the Inspector icon () next to the variable to print the Objective-C description of the object to the debug
area console and to display that description in an additional popover.

Debug Your App
Control Execution and View State Information

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

102

Click the Quick Look icon () to see a graphical display of the variable’s contents. You can implement a custom
Quick Look display for your own objects. See Quick Look for Custom Types in the Xcode Debugger .

When you build and run an OpenGL ES application on a connected device, the debug area toolbar includes a
Frame Capture button (). Click that button to capture a frame. You can use OpenGL ES frame capture to:

 ● Inspect OpenGL ES state information

 ● Introspect OpenGL ES objects such as view textures and shaders

 ● Step through the state calls that precede each draw call and watch the changes with each call

 ● Step through draw calls to see exactly how the image is constructed

 ● See in the assistant editor which objects are used by each draw call

 ● Edit shaders to see the effect upon your application

Debug Your App
Control Execution and View State Information

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

103

The screenshot shows the use of the debugger to view components of a rendered frame. The debug navigator
on the left shows parts of the rendering tree, and the main debug view shows the color and depth sources for
the rendered frame as well as other image sources.

For more help debugging OpenGL ES, see related items in Debug Navigator Help and Debug Area Help .

Examine Your App’s View Hierarchy at Runtime
Click the Debug View Hierarchy button () in the bar at the top of the debug area to inspect a 3D rendering
of the view hierarchy of your paused app. You can:

 ● Rotate the rendering by clicking and dragging in the canvas.

 ● Increase or decrease the spacing between the view layers using the slider on the lower left.

 ● Change range of visible views using the double ended slider on the lower right. Move the left handle to
change the bottom-most visible view. Move the right handle to change the top-most visible view.

 ● Reveal any clipped content of the selected view by pressing the Show clipped content button ().

 ●

Reveal any Auto Layout constraints of the selected view by pressing the Show constraints button ().

Debug Your App
Examine Your App’s View Hierarchy at Runtime

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

104

 ● Increase and decrease the magnification using the Zoom In (+) and Zoom Out (-) buttons.

For more help debugging views, see Debugging Views

Examine Your App’s Impact on System Resources
The debug navigator displays gauges that provide insight into how your app is performing. For example, the
CPU gauge shows a readout of your app’s CPU usage, making it easy to spot unexpected spikes. Depending
on the capabilities of your app and the characteristics of its destination, gauges can report your app’s impact
on memory, iCloud, OpenGL ES, energy, and the CPU.

Debug Your App
Examine Your App’s Impact on System Resources

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

105

To see a full report, click a gauge in the debug area. To perform a deeper analysis of your app’s performance,
click the Profile in Instruments button.

For problem areas, the energy report offers a preliminary diagnosis of what may be plaguing your app.

Debug Your App
Examine Your App’s Impact on System Resources

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

106

For more help, see Using Debug Gauges.

Measure Your App’s Performance
The Instruments app, which is included with Xcode, gathers data from your running app and presents it in a
graphical timeline. With Instruments, you can gather data about performance areas such as your app’s memory
usage, disk activity, network activity, and graphics operations. By viewing the data together, you can analyze
different aspects of your app’s performance to identify potential areas of improvement. You can also automate
the testing of your iOS app’s user interface elements.

There are several ways to start Instruments from Xcode. For example:

 ● Click the Profile in Instruments button from a debug gauge report.

 ● Choose Product > Profile.

 ● Specify an Instrument in the Profile action for a scheme.

The Instruments app uses individual data collection modules, known as instruments , to gather data about a
process over time. The Instruments app includes a library of templates. Each template contains instruments
for obtaining a set of related information.

Debug Your App
Measure Your App’s Performance

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

107

For more detailed information, see Performance Overview and Instruments User Guide .

Perform Early Testing in iOS Simulator
iOS Simulator helps you find major problems in your app during design and early testing. For example, the
Debug menu in iOS Simulator offers tools that help you:

 ● Slow an animation to spot any problems

 ● Trigger iCloud sync

 ● Identify blended view layers that harm app performance

 ● Identify images whose source pixels aren’t aligned to the destination pixels

 ● See what content is rendered offscreen

 ● Simulate different locations

In every simulated environment in iOS Simulator, the Home screen provides access to apps—such as Safari,
Contacts, Maps, and Passbook—that are included with iOS on the device. You can perform preliminary testing
of your app’s interaction with these apps in iOS Simulator. For example, if you are testing a game, use iOS
Simulator to test that the game uses Game Center correctly.

Debug Your App
Perform Early Testing in iOS Simulator

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

108

The Accessibility Inspector in iOS Simulator helps you test the usability of your app regardless of a person’s
limitations or disabilities. The Accessibility Inspector displays information about each accessible element in
your app and enables you to simulate VoiceOver interaction with those elements. To start the Accessibility
Inspector, click the Home button on iOS Simulator. Click Settings and go to General > Accessibility. Slide the
Accessibility Inspector switch to On.

You can test your app’s localizations in iOS Simulator by changing the language. In Settings, go to General >
International > Language.

Although you can test your app’s basic behavior in iOS Simulator, the simulator is limited as a test platform
for multiple reasons. For example:

 ● Because iOS Simulator is an app running on a Mac, iOS Simulator has access to the computer’s memory,
which is much greater than the memory found on a device.

 ● The iOS Simulator runs on the Mac CPU rather than the processor of an iOS device.

 ● iOS Simulator doesn’t run all threads that run on devices.

 ● iOS Simulator can’t simulate hardware features like the accelerometer, gyroscope, camera, or proximity
sensor.

While developing your app, run and test it on all of the iOS devices and iOS versions that you intend to support.

For more detailed information, see Testing and Debugging in iOS Simulator.

Customize Your Debugging Workflow
Specify behaviors that affect your workflow through the Xcode Behaviors preferences. Choose Xcode > Behaviors
to specify what should happen when a variety of events occur while building, running, and debugging your
app.

For example, Xcode can display the debug area when your code pauses at a breakpoint, and it can display the
issue navigator when a build fails.

In the screenshot below, behaviors are customized for whenever the code pauses. Here are some examples of
customized behaviors:

 ● Play an alert sound at every pause.

 ● Create a tab named Debug in the workspace window for displaying the debug navigator.

 ● Show both the variables view and the console view in the Debug tab.

Debug Your App
Customize Your Debugging Workflow

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

109

 ● Hide the utilities area in the Debug tab.

Debug Your App
Customize Your Debugging Workflow

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

110

As a result, when the code in the project hits a breakpoint, Xcode creates a Debug tab in the workspace window
with the specified content.

You can design custom behaviors that are triggered by menu items or their keyboard equivalents. Choose
Xcode > Preferences, select the Behaviors preferences pane, and click the Add button (+) at the bottom of the
pane. Type the name of the new behavior, and press Return. Select checkboxes to specify what should happen
when you invoke this behavior. For example, create a Unit Testing behavior that saves a snapshot of your
project and runs your unit tests. After you’ve created a behavior, it appears in the Xcode > Behaviors menu.

To assign a keyboard equivalent to a custom behavior, choose Xcode > Preferences and click Key Bindings. In
the Key Bindings preferences pane, select the Customized tab to find the custom behavior you want. In the
text field, enter the keys you want to use for the key binding in the text field, and click outside the text field
to complete the operation.

For more detail on types of breakpoints and breakpoint actions, see Breakpoint Navigator Help .

Debug Your App
Customize Your Debugging Workflow

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

111

Create tests that automatically exercise the features and test the performance of your application. Monitor the
results of the tests and fix any issues from the test navigator.

You can use the Xcode service, available in OS X Server, to automate the execution of tests. From Xcode on
your development Mac, you create bots that run on a separate server. In addition to running unit tests, bots
automatically perform static analysis on your code, build your app, and archive it for distribution to testers or
the App Store. Bots help you ensure that your product is always in a releasable state—and when there's a
failure, the service notifies you or the person whose code change caused the failure.

Create and Run Tests
Xcode supports two main types of testing. Functional tests focus on code functionality. Performance tests focus
on measuring execution time. Both kinds of tests are functions that you write. Each function sets up an
environment for the test, executes the targeted parts of the app, and tears down the test environment.

The most common type of functional testing is unit testing. A unit of code is the smallest testable component
of your project—for example, a method in a class or a set of methods that accomplish an essential purpose.
Unit tests are often used to detect regressions introduced by code changes to a project. Some developers write
unit tests first and then implement methods that pass the tests.

Performance tests measure the time it takes your app to complete a task on different types of devices. Xcode
tracks times for different configurations and you choose baselines from measured values.

A test case exercises a unit of code in a specific way or measures a specific part of your app’s performance; if
the result of the test is different from the expected result, the test case fails. A test suite is made up of a set of
test cases.

When you create a project or a target, Xcode includes a unit test target in the scheme that builds the app. The
implementation file for the target includes stubs for the setUp, tearDown, and testExample methods.
Complete these stub implementations and add other code as necessary to perform unit tests on your app.

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

112

Test Your App

Run all tests by choosing Product > Test. Click the Test Navigator icon to view the status and results of the
tests. You can add a test target to a project (or add a class to a test) by clicking the Add button (+) in the bottom
left corner of the test navigator. To view the source code for a particular test, select it from the test list. The
file opens in the source code editor.

To run a test suite, click the arrow to the right of the name. To run a subset of test methods, select them in the
test navigator and choose Product > Perform Action > Run Test Methods. To run an individual test method,
click the arrow to the right of the method name. Choose Product > Test to run all tests in the active scheme.

When a test succeeds, a green diamond with a checkmark denoting success appears to the right of the test
name. When a test fails, a red diamond with an X denoting failure appears to the right of the test name and

the issue is displayed in the issue navigator. To see the issue, click the Issue Navigator button in the navigator
bar.

To view only the failed tests, click the Failed Test button () at the bottom of the test navigator. Select a failed
method to examine it in the source code editor. After addressing the reason for the failure, click the failed test
indicator (a red diamond with an X) to rerun the test.

Show related test methods in an assistant editor by choosing either the Test Classes or Test Callers categories
from the Assistant pop-up menu.

For more detail on writing, running, and viewing tests, see Testing with Xcode .

Test Your App
Create and Run Tests

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

113

Automate Unit Testing as Part of a Continuous Integration Workflow
Xcode supports a continuous integration workflow through the Xcode service. The Xcode service, available in
OS X Server, automates the integration process of building, running unit tests, performing static analysis, and
archiving your product. The service reports build errors and warnings, static analyzer problems, and unit test
failures. All tests, analysis, and archiving are performed on the server.

For information on setting up and using the service, see Xcode Server and Continuous Integration Guide .

Test Your App
Automate Unit Testing as Part of a Continuous Integration Workflow

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

114

Xcode automatically saves changes to source, project, and workspace files as you work. This feature requires
no configuration, because Xcode continuously tracks your changes and saves them in memory. Xcode then
writes these changes to disk whenever you:

 ● Build and run your app

 ● Commit files to a source code repository

 ● Close the project

 ● Quit Xcode

 ● Create a snapshot

You can also manually save changes to disk by choosing File > Save.

Xcode lets you revert files and entire projects to a previous state; you can also discard those changes. You use
source control management to keep track of changes at a fine-grained level.

Revert to the Last Saved Version of a File
To discard all changes you’ve made to a file since it was last saved to disk, choose File > Revert Document. The
Revert Document command operates only on the file that has the editing focus. Give editing focus to a file
either by clicking its editor pane or by selecting it in the project navigator. For example, you experiment with
a new user interface layout and then decide to revert to the previous layout. Or you need to undo some code
changes because they introduced a problem.

The Revert Document command always returns the contents of the file to the last saved version on disk. If you
prefer to back out changes one change at a time, use the Undo command in the Edit menu.

Undo File Changes Incrementally
To back out changes to a file incrementally, choose Edit > Undo change . The Undo command is contextualized
by your last operation. For example, the command appears as Undo Typing if you make an edit to an
implementation file; the command changes to Undo Add Button if you add a button object to a storyboard.

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

115

Save and Revert Changes

With the Undo command, you can back out every change to a file since the start of your editing session. An
editing session begins when you open a project and ends when you close the project. Xcode lets you undo
all the edits in that session, even those already saved to disk. (Note, however, that the Revert Document
command clears the Undo history, and you cannot undo a revert operation.)

After you’ve chosen the Undo command, you can choose Edit > Redo to reverse the last undo operation.

Use Snapshots to Restore Projectwide Changes
Snapshots provide an easy way to back up the current version of your project or workspace. If something goes
wrong because of a code change you make you can restore your entire workspace, including all project files,
to a previous state.

A snapshot is an archive that includes all document files in the project or workspace and all project and
workspace settings. Snapshots support reverting from three changes that are not supported by the Revert
Document and Undo commands:

 ● Xcode operations that involve changes to many document files and potentially to project settings. These
operations include refactoring code, performing project validation, and adding Automatic Reference
Counting to an existing project.

 ● Adjustments to the workspace and project settings.

 ● Global search and replace operations.

You create a snapshot manually by choosing File > Create Snapshot.

Xcode can automatically create snapshots. The first time you perform a mass editing operation for a project
or workspace, Xcode prompts you to turn on automatic snapshots for mass editing operations. Also, you can
configure automatic creation of mass editing snapshots in the project or workspace preferences. Choose File

Save and Revert Changes
Use Snapshots to Restore Projectwide Changes

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

116

> Project Settings or File > Workspace Settings. In the settings window that appears, select the Snapshots tab
and set the “Create snapshot of project before mass-editing operations” checkbox to the desired state. The
screenshot shows the settings window with automatic snapshots turned off.

Set Xcode to automatically create snapshots in other circumstances by choosing Xcode > Preferences, selecting
the Behaviors pane, and selecting the Create Snapshot option for any of the behaviors. For example, the
screenshot shows adding the creation of a snapshot when a build succeeds. The Create snapshot checkbox is
at the bottom of the configurable behaviors on the left side of the window.

Save and Revert Changes
Use Snapshots to Restore Projectwide Changes

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

117

To see the snapshots for a project or workspace, choose Window > Organizer, select Projects to open the
Projects organizer, and click the project.

Save and Revert Changes
Use Snapshots to Restore Projectwide Changes

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

118

Recover an earlier state of a project or workspace by exporting a snapshot from the Projects organizer. Choose
Windows > Organizer, select a project or workspace, select a snapshot, and click the Export Snapshot button
at the bottom of the window. Xcode displays a preview dialog in which you can review the differences between
the snapshot version of a file on the left and the current version on the right.

To export a snapshot, click Export, select a destination folder for your snapshot, and click Export again.

You can also restore a snapshot on top of the current project by choosing File > Restore Snapshot from the
project’s workspace window. Xcode displays a preview dialog in which you can review the differences between
the current version of the project and the snapshot version. When you click Restore, Xcode replaces the current
version of the project with the version in the snapshot. Xcode takes a snapshot of the current version before
replacing it.

You can restore a deleted project from a snapshot because Xcode keeps track of all your projects, even deleted
ones, and displays them in the Projects organizer.

Save and Revert Changes
Use Snapshots to Restore Projectwide Changes

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

119

Store and Track Changes with Source Control
Use commands in the Source Control menu to manage your project files with a source code repository. A
repository saves multiple versions of each file onto disk, storing historical metadata about each version of each
file. Source control allows you to keep track of file changes at a finer level of detail than snapshots allow. Source
control also helps you coordinate efforts if you work with a team of programmers.

A source control system helps you reconstruct past versions of a project. You can commit a file to your repository
each time you make a major change. If you introduce bugs, you can use the Xcode version editor to compare
the new version of the file with a past version that worked correctly, to locate the source of the trouble.

When multiple people work on a project, source control helps prevent conflicts and helps resolve conflicts
should they arise. By keeping a central repository that holds the master copy of the software, the source control
system allows each programmer to work on a local copy with no risk of corrupting the master. With a file
checkout system, you can ensure that two people don’t work on the same code at the same time. If two people
do change the same code, the system helps you merge the two versions.

You can also branch from a stable version of your project, add new features and make other changes to the
branch, and then merge and reconcile those changes back into the stable version of your project.

Xcode supports two popular source control systems: Git and Subversion. Subversion (often abbreviated svn)
is always server based. The server is typically on a remote computer (although it is possible to install the server
locally). Git can be used purely as a local repository, or you can install a Git server on a remote computer to
share a repository among team members.

Save and Revert Changes
Store and Track Changes with Source Control

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

120

If you are working alone, it’s easiest to use Git, because you won’t need to set up a server. When you create a
project, Xcode automatically sets up a Git repository for you.

In addition to performing continuous integrations, the Xcode service, available with OS X Server, hosts Git
repositories.

If your repository is on a server, choose Source Control > Check Out to create a local working copy of the project
on your computer. If you use a local Git repository, you don’t check out a working copy, because your local
repository is your master copy.

When you are satisfied with changes you've made to a file, choose Source Control > Commit to ensure that
those changes are preserved in the repository. You are required to provide a comment explaining the nature
of your commit. If your Git repository is on a server, the commit operation adds your changes to your local
repository. Perform a push operation to add your committed changes to the Git repository on the server. For
example, when you choose Source Control > Commit on your development Mac, select the “Push to remote”
option, specify the remote repository in the pop-up menu, and click Commit Files.

Save and Revert Changes
Store and Track Changes with Source Control

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

121

You can see the source control status of your files in the project navigator. The status is shown as a badge next
to the filename.

SCM statusBadge

Locally modifiedM

Updated in repositoryU

Locally addedA

Locally deletedD

IgnoredI

Replaced in the repositoryR

The contents of the folder have mixed status; display the contents to see individual status–

Not under source control?

For help on connecting to and working with source code repositories, see Source Control Management Help

Save and Revert Changes
Store and Track Changes with Source Control

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

122

Compare File Versions to Revert Lines of Code
Choose View > Version Editor > Show Comparison View to compare versions of files saved in a repository. Use
the jump bars to choose file versions based on their position within a repository. Each jump bar controls the
selection for the content pane above it. To display a version, browse through the hierarchy to find it, then click
to choose it. Shaded areas indicate changes between versions.

Use the version timeline to choose file versions based on their chronological order. Click the Timeline Viewer

icon () at the bottom of the center column to display the timeline between the two editing panes. Move
the pointer up or down through the timeline to browse the available versions. When you find the version you
want, click the left or right disclosure button to display that version in the corresponding editor pane.

You can edit the current working copy of the file in the version editor. If you want to revert changes between
versions, you can copy code from an older version and paste it into the current version.

Create a Branch to Isolate Risky Changes
After you’ve worked on a project for a while, you are likely to have a body of reliable, stable code. You can
choose Source Control > Working Copy > New Branch to create a copy of that code. Then you can work on
new features and other changes without destabilizing your existing code base. When you are satisfied with
your changes, you can merge them back into the body of stable code. Use Source Control > Working Copy >
Merge from Branch and Source Control > Working Copy > Merge into Branch to combine and reconcile
differences between versions of your project.

Save and Revert Changes
Store and Track Changes with Source Control

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

123

This guide introduces you to features and capabilities of Xcode. To help you become an expert Xcode user,
Apple provides additional documentation within Xcode. You'll find identical Xcode documentation online in
the iOS Developer Library and Mac Developer Library.

Get a Hands-On Introduction
If you’re new to iOS or Mac programming, work through Start Developing iOS Apps Today or Start Developing
Mac Apps Today . Each document provides a starting point for app development. In each, you create a simple
app, and you learn the basics of programming with Objective-C using either the Cocoa Touch or Cocoa
framework.

For a guided tour through the development of a game project that can be built for both iOS and Mac, look at
code:Explained Adventure , which includes a link to download the complete Xcode project.

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

124

Learn More About Xcode

https://developer.apple.com/library/ios/navigation/index.html#section=Topics&topic=Xcode
https://developer.apple.com/library/mac/navigation/index.html#section=Topics&topic=Xcode

Find Step-by-Step Instructions
As you saw earlier, step-by-step instructions for performing common tasks are available directly in Xcode.
Control-click areas of the Xcode user interface to see a short list of the most common operations. Choose Show
All Help Topics to see a larger list. Select an operation from the list, and a help article appears in the Xcode
documentation viewer window.

Many articles include links to additional articles describing related tasks. Many articles also include links to
lengthier discussions in user guides, which offer additional context and details about performing tasks in Xcode.

Learn More About Xcode
Find Step-by-Step Instructions

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

125

The Help menu also offers quick access to help articles. Type a search term or phrase, and a list of relevant help
articles and related documents appears directly in the menu.

You can also use the search bar in the Xcode documentation viewer to locate help for a task. In Xcode, choose
Help > Documentation and API Reference to display the documentation viewer. As you type into the search
field, a menu appears of top search results. Choose a document directly from this menu, or click Show All
Results at the bottom it to see a comprehensive list of search results.

Learn More About Xcode
Find Step-by-Step Instructions

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

126

Xcode obtains these results by searching through all of the documentation relevant to your project’s SDK.
You’ll find results for API symbols listed under API Reference, programming guide results under SDK Guides,
and Xcode documentation results under Tools Guides.

Learn from Detailed User Guides
Apple provides detailed teaching guides for developer tool topics, including iOS Simulator, Instruments, app
distribution, and continuous integration. To locate user guides for features in Xcode, use the search bar in the
Xcode documentation viewer and look for results under Tools Guides.

The Instruments User Guide , for example, explains how to use the Instruments app to examine program behavior.
Like many developer tool guides, it begins with a quick start tutorial.

Learn More About Xcode
Learn from Detailed User Guides

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

127

To hide or show a list of the chapter and section titles for the document, click the “Table of Contents” button

() to the left of the search bar .

Learn More About Xcode
Learn from Detailed User Guides

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

128

Click the Documentation Navigator button () to the left of the “Table of Contents” button to display a
navigation sidebar. To browse the list of Apple developer documentation installed in Xcode, click the

Documentation Library button ().

Learn More About Xcode
Learn from Detailed User Guides

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

129

Use the tab bar in the doc viewer to keep multiple related documents open at once. To create a tab, choose
File > New > Tab (or click the Add button (+) in the tab bar).

Learn More About Xcode
Learn from Detailed User Guides

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

130

For quicker access to documents that you’ll return to, click the Bookmark icon () next to a chapter or section

title. To display all of your bookmarks, click the Documentation Navigator button () to display the navigation

sidebar, then click the Bookmark button () at the top of the sidebar.

Stay Up to Date
Apple continually produces new and updated help articles, user guides, programming guides, and API reference.
As updated documentation becomes available, it downloads to Xcode in the background. Be sure to keep your
documentation up to date by leaving the default download behavior intact or by manually checking for
documentation updates on a regular basis.

Learn More About Xcode
Stay Up to Date

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

131

Documentation is installed in the form of documentation sets, also called doc sets . Apple doc sets associated
with your projects’ SDKs are installed with Xcode, and access to updates for them is controlled by subscription.
For your convenience, Xcode can keep these subscriptions up to date. This feature is controlled by the option
“Check for and install updates automatically,” which you can select in the Downloads pane (available by
choosing Xcode > Preferences).

To check for updates manually, click “Check and Install Now.” If no new updates are available, Xcode displays
a message to that effect. When an update for a doc set is available but not yet installed on your system, Xcode

displays a Download button on the subscription line for that doc set. Click the Download button () to
download and install the updated doc set on your system.

Learn More About Xcode
Stay Up to Date

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

132

This table describes the changes to Xcode Overview .

NotesDate

Updates for OS X plus other minor updates.2014-10-20

Updates for OS X plus other minor updates.2014-10-16

Updated for Xcode 6 and iOS 8, including the new look of the Xcode UI,
updates to Build a User Interface for Size Classes and recent Auto Layout
additions, updates to Debug Your App for new features, and other updates
and changes throughout.

2014-09-17

Added minor clarifications and fixed typos.2014-03-10

Revised the descriptions of actions and outlets in the chapter "Build a
User Interface."

2014-02-11

Updated the information about documentation viewing to reflect product
improvements.

2013-10-22

Changed the title from "Xcode User Guide" and updated for Xcode 5.2013-09-18

Made minor content fixes.2013-04-23

Incorporated content from Tools Workflow Guide for iOS.2013-01-28

Made available in PDF.2012-09-19

Added chapter about saving and reverting changes to files.2012-06-11

Added features new in Xcode 4.2.2011-10-12

Added features new in Xcode 4.1.2011-08-10

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

133

Document Revision History

NotesDate

Added features new in Xcode 4.1.2011-07-07

Made editorial and format changes throughout.2011-05-07

New document that explains how to use Xcode 4 to develop software for
iOS and OS X.

2011-03-02

Document Revision History

2014-10-20 | Copyright © 2014 Apple Inc. All Rights Reserved.

134

Apple Inc.
Copyright © 2014 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer or device for personal use only and to
print copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-branded products.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Cocoa Touch,
Finder, Instruments, iPad, iPhone, iPhoto, iPod,
iPod touch, iTunes, Logic, Mac, Mac OS,
Objective-C, OS X, Passbook, Safari, and Xcode
are trademarks of Apple Inc., registered in the
U.S. and other countries.

Launchpad, Multi-Touch, and Retina are
trademarks of Apple Inc.

iCloud is a service mark of Apple Inc., registered
in the U.S. and other countries.

App Store and Mac App Store are service marks
of Apple Inc.

IOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT, ERROR OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

Some jurisdictions do not allow the exclusion of
implied warranties or liability, so the above exclusion
may not apply to you.

	Xcode Overview
	Contents
	Introduction
	Develop Your App in the Workspace Window
	Navigate Your Workspace
	Edit Your Project Files
	Access Resources and Inspect Elements in the Utilities Area
	Manage Common Tasks with the Workspace Toolbar
	Work in Multiple Tabs or Multiple Windows

	Maintain Your Code and Other Resources in Projects or Workspaces
	A Project Is a Repository of Files and Resources for Building Apps
	Apply App-Specific Settings to a Target
	Add Technology Features to a Target
	Add File Type and Service Information to a Target
	Override Build Settings for a Target
	Use Workspaces to Work on Related Projects
	Close and Reopen a Project or a Workspace

	Write Code in the Source Editor
	Fix Errors as You Type
	Drop Code Snippets into Your Files
	Create Source Files from Templates
	Perform Static Code Analysis
	Speed Up Typing with Code Completion
	Split the Editor to Display Related Content
	Open a File Quickly
	Use Gestures and Keyboard Shortcuts
	Automate Extensive Changes in Your Code
	Display the Definition of a Symbol
	Examine the Structure of Your Code with Code Folding
	Match Pairs of Braces, Parentheses, and Brackets Automatically
	Choose Syntax-Aware Fonts and Text Colors
	Customize Editing and Indenting Options
	Look Up Documentation for a Symbol
	Find Help for Using the Source Editor

	Build a User Interface
	Add User Interface Elements from the Object Library
	Lay Out User Interface Objects for Automatic Resizing and Positioning
	Connect User Interface Objects to Code
	Send Action Messages from a Control to Your Code
	Send Messages to a User Interface Object Through an Outlet

	Design the User Interface of Your App with Storyboards
	Adapt to Multiple iOS Screen Sizes and Orientations with Size Classes
	Find and Replace Strings
	Look Up Documentation for an Object
	Creating and Rendering Custom View Classes on the Canvas
	Find Help for Using Interface Builder

	Add Icons, Images, and Effects
	Add App Icons and Launch Images
	Work with Image Assets in the Asset Catalog
	Create and Set the iOS Launch Images or Launch Screen File
	Create and Set iOS Launch Images for iOS 7 and Earlier

	Add Particle Emitter Effects
	Add 3D Scenes to Your App
	Find More Help

	Run Your App
	Choose a Scheme to Build Your App
	Choose a Destination to Run Your App
	Run Your App
	Run Your App in iOS Simulator
	Run Your App on a Connected Device
	Choose Your Device for the Run Destination
	Create Custom Simulator Configurations
	Show Simulators or Devices in the Run Destinations Menu

	Edit, Create, and Manage Schemes

	Debug Your App
	Control Execution and View State Information
	Examine Your App’s View Hierarchy at Runtime
	Examine Your App’s Impact on System Resources
	Measure Your App’s Performance
	Perform Early Testing in iOS Simulator
	Customize Your Debugging Workflow

	Test Your App
	Create and Run Tests
	Automate Unit Testing as Part of a Continuous Integration Workflow

	Save and Revert Changes
	Revert to the Last Saved Version of a File
	Undo File Changes Incrementally
	Use Snapshots to Restore Projectwide Changes
	Store and Track Changes with Source Control
	Compare File Versions to Revert Lines of Code
	Create a Branch to Isolate Risky Changes

	Learn More About Xcode
	Get a Hands-On Introduction
	Find Step-by-Step Instructions
	Learn from Detailed User Guides
	Stay Up to Date

	Revision History

