Spec-Zone .ru
спецификации, руководства, описания, API

16.4.1.30. Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction. In general, you should avoid transactions that update both transactional and nontransactional tables in a replication environment. You should also avoid using any statement that accesses both transactional (or temporary) and nontransactional tables and writes to any of them.

As of MySQL 5.5.2, the server uses these rules for binary logging:

Transactional, nontransactional, and mixed statements. To apply those rules, the server considers a statement nontransactional if it changes only nontransactional tables, and transactional if it changes only transactional tables. In MySQL 5.6, a statement that references both nontransactional and transactional tables and updates any of the tables involved, is considered a "mixed" statement. (In previous MySQL release series, a statement that changed both nontransactional and transactional tables was considered mixed.) Mixed statements, like transactional statements, are cached and logged when the transaction commits.

A mixed statement that updates a transactional table is considered unsafe if the statement also performs either of the following actions:

A mixed statement following the update of a transactional table within a transaction is considered unsafe if it performs either of the following actions:

For more information, see Section 16.1.2.3, "Determination of Safe and Unsafe Statements in Binary Logging".

Note

A mixed statement is unrelated to mixed binary logging format.

In situations where transactions mix updates to transactional and nontransactional tables, the order of statements in the binary log is correct, and all needed statements are written to the binary log even in case of a ROLLBACK. However, when a second connection updates the nontransactional table before the first connection transaction is complete, statements can be logged out of order because the second connection update is written immediately after it is performed, regardless of the state of the transaction being performed by the first connection.

Using different storage engines on master and slave. It is possible to replicate transactional tables on the master using nontransactional tables on the slave. For example, you can replicate an InnoDB master table as a MyISAM slave table. However, if you do this, there are problems if the slave is stopped in the middle of a BEGIN ... COMMIT block because the slave restarts at the beginning of the BEGIN block.

In MySQL 5.6, it is also safe to replicate transactions from MyISAM tables on the master to transactional tables—such as tables that use the InnoDB storage engine—on the slave. In such cases (beginning with MySQL 5.5.0), an AUTOCOMMIT=1 statement issued on the master is replicated, thus enforcing AUTOCOMMIT mode on the slave.

When the storage engine type of the slave is nontransactional, transactions on the master that mix updates of transactional and nontransactional tables should be avoided because they can cause inconsistency of the data between the master transactional table and the slave nontransactional table. That is, such transactions can lead to master storage engine-specific behavior with the possible effect of replication going out of synchrony. MySQL does not issue a warning about this currently, so extra care should be taken when replicating transactional tables from the master to nontransactional tables on the slaves.

Changing the binary logging format within transactions. Beginning with MySQL 5.5.3, the binlog_format system variable is read-only as long as a transaction is in progress. (Bug #47863)

Every transaction (including autocommit transactions) is recorded in the binary log as though it starts with a BEGIN statement, and ends with either a COMMIT or a ROLLBACK statement. In MySQL 5.6, this true is even for statements affecting tables that use a nontransactional storage engine (such as MyISAM).