Spec-Zone .ru
спецификации, руководства, описания, API
|
|
JavaTM 2 Platform Standard Edition |
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: INNER | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--java.awt.font.TextLayout
TextLayout
is an immutable graphical representation of styled
character data.
It provides the following capabilities:
A TextLayout
object can be rendered using
its draw
method.
TextLayout
can be constructed either directly or through
the use of a LineBreakMeasurer
. When constructed directly, the
source text represents a single paragraph. LineBreakMeasurer
allows styled text to be broken into lines that fit within a particular
width. See the LineBreakMeasurer
documentation for more
information.
TextLayout
construction logically proceeds as follows:
TextAttribute.FONT
is present, otherwise by computing
a default font using the attributes that have been defined
All graphical information returned from a TextLayout
object's methods is relative to the origin of the
TextLayout
, which is the intersection of the
TextLayout
object's baseline with its left edge. Also,
coordinates passed into a TextLayout
object's methods
are assumed to be relative to the TextLayout
object's
origin. Clients usually need to translate between a
TextLayout
object's coordinate system and the coordinate
system in another object (such as a
Graphics
object).
TextLayout
objects are constructed from styled text,
but they do not retain a reference to their source text. Thus,
changes in the text previously used to generate a TextLayout
do not affect the TextLayout
.
Three methods on a TextLayout
object
(getNextRightHit
, getNextLeftHit
, and
hitTestChar
) return instances of TextHitInfo
.
The offsets contained in these TextHitInfo
objects
are relative to the start of the TextLayout
, not
to the text used to create the TextLayout
. Similarly,
TextLayout
methods that accept TextHitInfo
instances as parameters expect the TextHitInfo
object's
offsets to be relative to the TextLayout
, not to any
underlying text storage model.
Examples:
Constructing and drawing a TextLayout
and its bounding
rectangle:
Graphics2D g = ...; Point2D loc = ...; Font font = Font.getFont("Helvetica-bold-italic"); FontRenderContext frc = g.getFontRenderContext(); TextLayout layout = new TextLayout("This is a string", font, frc); layout.draw(g, loc.getX(), loc.getY()); Rectangle2D bounds = layout.getBounds(); bounds.setRect(bounds.getX()+loc.getX(), bounds.getY()+loc.getY(), bounds.getWidth(), bounds.getHeight()) g.draw(bounds);
Hit-testing a TextLayout
(determining which character is at
a particular graphical location):
Point2D click = ...; TextHitInfo hit = layout.hitTestChar( (float) (click.getX() - loc.getX()), (float) (click.getY() - loc.getY()));
Responding to a right-arrow key press:
Drawing a selection range corresponding to a substring in the source text.
The selected area may not be visually contiguous:
Drawing a visually contiguous selection range. The selection range may
correspond to more than one substring in the source text. The ranges of
the corresponding source text substrings can be obtained with
The
All the text is styled using the provided attributes.
The iterator must specify a single paragraph of text because an
entire paragraph is required for the bidirectional
algorithm.
If this
Some code may rely on immutablity of layouts. Subclassers should not
call this directly, but instead should call getJustifiedLayout, which
will call this method on a clone of this layout, preserving
the original.
The array is indexed by one of the values defined in
The leading is computed from the leading, descent, and baseline
of all glyphvectors in the
This method is meant for informational use. To display carets, it
is better to use
If the selection includes the leftmost (topmost) position, the selection
is extended to the left (top) of
Although the selection is always contiguous, the logically selected
text can be discontiguous on lines with mixed-direction text. The
logical ranges of text selected can be retrieved using
If the selection range includes the first logical character, the
selection is extended to the portion of
The selection can be discontiguous on lines with mixed-direction text.
Only those characters in the logical range between start and limit
appear selected. For example, consider the text 'ABCdef' where capital
letters indicate right-to-left text, rendered on a right-to-left line,
with a logical selection from 0 to 4 ('ABCd'). The text appears as
follows, with bold standing in for the selection, and underlining for
the extension:
int insertionIndex = ...;
TextHitInfo next = layout.getNextRightHit(insertionIndex);
if (next != null) {
// translate graphics to origin of layout on screen
g.translate(loc.getX(), loc.getY());
Shape[] carets = layout.getCaretShapes(next.getInsertionIndex());
g.draw(carets[0]);
if (carets[1] != null) {
g.draw(carets[1]);
}
}
// selStart, selLimit should be relative to the layout,
// not to the source text
int selStart = ..., selLimit = ...;
Color selectionColor = ...;
Shape selection = layout.getLogicalHighlightShape(selStart, selLimit);
// selection may consist of disjoint areas
// graphics is assumed to be tranlated to origin of layout
g.setColor(selectionColor);
g.fill(selection);
getLogicalRangesForVisualSelection()
:
TextHitInfo selStart = ..., selLimit = ...;
Shape selection = layout.getVisualHighlightShape(selStart, selLimit);
g.setColor(selectionColor);
g.fill(selection);
int[] ranges = getLogicalRangesForVisualSelection(selStart, selLimit);
// ranges[0], ranges[1] is the first selection range,
// ranges[2], ranges[3] is the second selection range, etc.
LineBreakMeasurer
,
TextAttribute
,
TextHitInfo
Inner Class Summary
static class
TextLayout.CaretPolicy
Defines a policy for determining the strong caret location.
Field Summary
static TextLayout.CaretPolicy
DEFAULT_CARET_POLICY
This CaretPolicy
is used when a policy is not specified
by the client.
Constructor Summary
TextLayout(AttributedCharacterIterator text,
FontRenderContext frc)
Constructs a TextLayout
from an iterator over styled text.
TextLayout(String string,
Font font,
FontRenderContext frc)
Constructs a TextLayout
from a String
and a Font
.
TextLayout(String string,
Map attributes,
FontRenderContext frc)
Constructs a TextLayout
from a String
and an attribute set.
Method Summary
protected Object
clone()
Creates a copy of this TextLayout
.
void
draw(Graphics2D g2,
float x,
float y)
Renders this TextLayout
at the specified location in
the specified Graphics2D
context.
boolean
equals(Object obj)
Returns true
if the specified Object
is a
TextLayout
object and if the specified Object
equals this TextLayout
.
boolean
equals(TextLayout rhs)
Returns true
if the two layouts are equal.
float
getAdvance()
Returns the advance of this TextLayout
.
float
getAscent()
Returns the ascent of this TextLayout
.
byte
getBaseline()
Returns the baseline for this TextLayout
.
float[]
getBaselineOffsets()
Returns the offsets array for the baselines used for this
TextLayout
.
Shape
getBlackBoxBounds(int firstEndpoint,
int secondEndpoint)
Returns the black box bounds of the characters in the specified range.
Rectangle2D
getBounds()
Returns the bounds of this TextLayout
.
float[]
getCaretInfo(TextHitInfo hit)
Returns information about the caret corresponding to hit
.
float[]
getCaretInfo(TextHitInfo hit,
Rectangle2D bounds)
Returns information about the caret corresponding to hit
.
Shape
getCaretShape(TextHitInfo hit)
Returns a Shape
representing the caret at the specified
hit inside the natural bounds of this TextLayout
.
Shape
getCaretShape(TextHitInfo hit,
Rectangle2D bounds)
Returns a Shape
representing the caret at the specified
hit inside the specified bounds.
Shape[]
getCaretShapes(int offset)
Returns two paths corresponding to the strong and weak caret.
Shape[]
getCaretShapes(int offset,
Rectangle2D bounds)
Returns two paths corresponding to the strong and weak caret.
Shape[]
getCaretShapes(int offset,
Rectangle2D bounds,
TextLayout.CaretPolicy policy)
Returns two paths corresponding to the strong and weak caret.
int
getCharacterCount()
Returns the number of characters represented by this
TextLayout
.
byte
getCharacterLevel(int index)
Returns the level of the character at index
.
float
getDescent()
Returns the descent of this TextLayout
.
TextLayout
getJustifiedLayout(float justificationWidth)
Creates a copy of this TextLayout
justified to the
specified width.
float
getLeading()
Returns the leading of the TextLayout
.
Shape
getLogicalHighlightShape(int firstEndpoint,
int secondEndpoint)
Returns a Shape
enclosing the logical selection in the
specified range, extended to the natural bounds of this
TextLayout
.
Shape
getLogicalHighlightShape(int firstEndpoint,
int secondEndpoint,
Rectangle2D bounds)
Returns a Shape
enclosing the logical selection in the
specified range, extended to the specified bounds
.
int[]
getLogicalRangesForVisualSelection(TextHitInfo firstEndpoint,
TextHitInfo secondEndpoint)
Returns the logical ranges of text corresponding to a visual selection.
TextHitInfo
getNextLeftHit(int offset)
Returns the hit for the next caret to the left (top); if no
such hit, returns null
.
TextHitInfo
getNextLeftHit(int offset,
TextLayout.CaretPolicy policy)
Returns the hit for the next caret to the left (top); if no
such hit, returns null
.
TextHitInfo
getNextLeftHit(TextHitInfo hit)
Returns the hit for the next caret to the left (top); if no such
hit, returns null
.
TextHitInfo
getNextRightHit(int offset)
Returns the hit for the next caret to the right (bottom); if no
such hit, returns null
.
TextHitInfo
getNextRightHit(int offset,
TextLayout.CaretPolicy policy)
Returns the hit for the next caret to the right (bottom); if no
such hit, returns null
.
TextHitInfo
getNextRightHit(TextHitInfo hit)
Returns the hit for the next caret to the right (bottom); if there
is no such hit, returns null
.
Shape
getOutline(AffineTransform tx)
Returns a Shape
representing the outline of this
TextLayout
.
float
getVisibleAdvance()
Returns the advance of this TextLayout
, minus trailing
whitespace.
Shape
getVisualHighlightShape(TextHitInfo firstEndpoint,
TextHitInfo secondEndpoint)
Returns a Shape
enclosing the visual selection in the
specified range, extended to the bounds.
Shape
getVisualHighlightShape(TextHitInfo firstEndpoint,
TextHitInfo secondEndpoint,
Rectangle2D bounds)
Returns a path enclosing the visual selection in the specified range,
extended to bounds
.
TextHitInfo
getVisualOtherHit(TextHitInfo hit)
Returns the hit on the opposite side of the specified hit's caret.
protected void
handleJustify(float justificationWidth)
Justify this layout.
int
hashCode()
Returns the hash code of this TextLayout
.
TextHitInfo
hitTestChar(float x,
float y)
Returns a TextHitInfo
corresponding to the
specified point.
TextHitInfo
hitTestChar(float x,
float y,
Rectangle2D bounds)
Returns a TextHitInfo
corresponding to the
specified point.
boolean
isLeftToRight()
Returns true
if this TextLayout
has
a left-to-right base direction or false
if it has
a right-to-left base direction.
boolean
isVertical()
Returns true
if this TextLayout
is vertical.
String
toString()
Returns debugging information for this TextLayout
.
Methods inherited from class java.lang.Object
finalize,
getClass,
notify,
notifyAll,
wait,
wait,
wait
Field Detail
DEFAULT_CARET_POLICY
public static final TextLayout.CaretPolicy DEFAULT_CARET_POLICY
CaretPolicy
is used when a policy is not specified
by the client. With this policy, a hit on a character whose direction
is the same as the line direction is stronger than a hit on a
counterdirectional character. If the characters' directions are
the same, a hit on the leading edge of a character is stronger
than a hit on the trailing edge of a character.
Constructor Detail
TextLayout
public TextLayout(String string,
Font font,
FontRenderContext frc)
TextLayout
from a String
and a Font
. All the text is styled using the specified
Font
.
String
must specify a single paragraph of text,
because an entire paragraph is required for the bidirectional
algorithm.
str
- the text to displayfont
- a Font
used to style the textfrc
- contains the information needed to correctly measure the
text
TextLayout
public TextLayout(String string,
Map attributes,
FontRenderContext frc)
TextLayout
from a String
and an attribute set.
string
must specify a single paragraph of text because an
entire paragraph is required for the bidirectional algorithm.
str
- the text to displayattributes
- the attributes used to style the textfrc
- contains the information needed to correctly measure the
text
TextLayout
public TextLayout(AttributedCharacterIterator text,
FontRenderContext frc)
TextLayout
from an iterator over styled text.
text
- the styled text to displayfrc
- contains the information needed to correctly measure the
text
Method Detail
clone
protected Object clone()
TextLayout
.
Cloneable
interface. Subclasses
that override the clone
method can also
throw this exception to indicate that an instance cannot
be cloned.Cloneable
getJustifiedLayout
public TextLayout getJustifiedLayout(float justificationWidth)
TextLayout
justified to the
specified width.
TextLayout
has already been justified, an
exception is thrown. If this TextLayout
object's
justification ratio is zero, a TextLayout
identical
to this TextLayout
is returned.
justificationWidth
- the width to use when justifying the line.
For best results, it should not be too different from the current
advance of the line.TextLayout
justified to the specified width.
handleJustify
protected void handleJustify(float justificationWidth)
justificationWidth
- the width to use when justifying the line.
For best results, it should not be too different from the current
advance of the line.getJustifiedLayout(float)
getBaseline
public byte getBaseline()
TextLayout
.
The baseline is one of the values defined in Font
,
which are roman, centered and hanging. Ascent and descent are
relative to this baseline. The baselineOffsets
are also relative to this baseline.
TextLayout
.getBaselineOffsets()
,
Font
getBaselineOffsets
public float[] getBaselineOffsets()
TextLayout
.
Font
, which are roman, centered and hanging. The
values are relative to this TextLayout
object's
baseline, so that getBaselineOffsets[getBaseline()] == 0
.
Offsets are added to the position of the TextLayout
object's baseline to get the position for the new baseline.
TextLayout
.getBaseline()
,
Font
getAdvance
public float getAdvance()
TextLayout
.
The advance is the distance from the origin to the advance of the
rightmost (bottommost) character measuring in the line direction.
TextLayout
.
getVisibleAdvance
public float getVisibleAdvance()
TextLayout
, minus trailing
whitespace.
TextLayout
without the
trailing whitespace.getAdvance()
getAscent
public float getAscent()
TextLayout
.
The ascent is the distance from the top (right) of the
TextLayout
to the baseline. It is always either
positive or zero. The ascent is sufficient to
accomodate superscripted text and is the maximum of the sum of the
ascent, offset, and baseline of each glyph.
TextLayout
.
getDescent
public float getDescent()
TextLayout
.
The descent is the distance from the baseline to the bottom (left) of
the TextLayout
. It is always either positive or zero.
The descent is sufficient to accomodate subscripted text and is the
maximum of the sum of the descent, offset, and baseline of each glyph.
TextLayout
.
getLeading
public float getLeading()
TextLayout
.
The leading is the suggested interline spacing for this
TextLayout
.
TextLayout
. The algorithm
is roughly as follows:
maxD = 0;
maxDL = 0;
for (GlyphVector g in all glyphvectors) {
maxD = max(maxD, g.getDescent() + offsets[g.getBaseline()]);
maxDL = max(maxDL, g.getDescent() + g.getLeading() +
offsets[g.getBaseline()]);
}
return maxDL - maxD;
TextLayout
.
getBounds
public Rectangle2D getBounds()
TextLayout
.
The bounds contains all of the pixels the TextLayout
can draw. It might not coincide exactly with the ascent, descent,
origin or advance of the TextLayout
.
Rectangle2D
that is the bounds of this
TextLayout
.
isLeftToRight
public boolean isLeftToRight()
true
if this TextLayout
has
a left-to-right base direction or false
if it has
a right-to-left base direction. The TextLayout
has a base direction of either left-to-right (LTR) or
right-to-left (RTL). The base direction is independent of the
actual direction of text on the line, which may be either LTR,
RTL, or mixed. Left-to-right layouts by default should position
flush left. If the layout is on a tabbed line, the
tabs run left to right, so that logically successive layouts position
left to right. The opposite is true for RTL layouts. By default they
should position flush left, and tabs run right-to-left.
true
if the base direction of this
TextLayout
is left-to-right; false
otherwise.
isVertical
public boolean isVertical()
true
if this TextLayout
is vertical.
true
if this TextLayout
is vertical;
false
otherwise.
getCharacterCount
public int getCharacterCount()
TextLayout
.
TextLayout
.
getCaretInfo
public float[] getCaretInfo(TextHitInfo hit,
Rectangle2D bounds)
hit
.
The first element of the array is the intersection of the caret with
the baseline. The second element of the array is the slope (run/rise)
of the caret.
getCaretShapes
.
hit
- a hit on a character in this TextLayout
bounds
- the bounds to which the caret info is constructedgetCaretShapes(int, Rectangle2D, TextLayout.CaretPolicy)
getCaretInfo
public float[] getCaretInfo(TextHitInfo hit)
hit
.
This method is a convenience overload of getCaretInfo
and
uses the natural bounds of this TextLayout
.
hit
- a hit on a character in this TextLayout
getNextRightHit
public TextHitInfo getNextRightHit(TextHitInfo hit)
null
.
If the hit character index is out of bounds, an
IllegalArgumentException
is thrown.
hit
- a hit on a character in this layoutnull
.
getNextRightHit
public TextHitInfo getNextRightHit(int offset,
TextLayout.CaretPolicy policy)
null
. The hit is to the right of
the strong caret at the specified offset, as determined by the
specified policy.
The returned hit is the stronger of the two possible
hits, as determined by the specified policy.
offset
- an insertion offset in this TextLayout
.
Cannot be less than 0 or greater than this TextLayout
object's character count.policy
- the policy used to select the strong caretnull
.
getNextRightHit
public TextHitInfo getNextRightHit(int offset)
null
. The hit is to the right of
the strong caret at the specified offset, as determined by the
default policy.
The returned hit is the stronger of the two possible
hits, as determined by the default policy.
offset
- an insertion offset in this TextLayout
.
Cannot be less than 0 or greater than the TextLayout
object's character count.null
.
getNextLeftHit
public TextHitInfo getNextLeftHit(TextHitInfo hit)
null
.
If the hit character index is out of bounds, an
IllegalArgumentException
is thrown.
hit
- a hit on a character in this TextLayout
.null
.
getNextLeftHit
public TextHitInfo getNextLeftHit(int offset,
TextLayout.CaretPolicy policy)
null
. The hit is to the left of
the strong caret at the specified offset, as determined by the
specified policy.
The returned hit is the stronger of the two possible
hits, as determined by the specified policy.
offset
- an insertion offset in this TextLayout
.
Cannot be less than 0 or greater than this TextLayout
object's character count.policy
- the policy used to select the strong caretnull
.
getNextLeftHit
public TextHitInfo getNextLeftHit(int offset)
null
. The hit is to the left of
the strong caret at the specified offset, as determined by the
default policy.
The returned hit is the stronger of the two possible
hits, as determined by the default policy.
offset
- an insertion offset in this TextLayout
.
Cannot be less than 0 or greater than this TextLayout
object's character count.null
.
getVisualOtherHit
public TextHitInfo getVisualOtherHit(TextHitInfo hit)
hit
- the specified hit
getCaretShape
public Shape getCaretShape(TextHitInfo hit,
Rectangle2D bounds)
Shape
representing the caret at the specified
hit inside the specified bounds.
hit
- the hit at which to generate the caretbounds
- the bounds of the TextLayout
to use
in generating the caret.Shape
representing the caret.
getCaretShape
public Shape getCaretShape(TextHitInfo hit)
Shape
representing the caret at the specified
hit inside the natural bounds of this TextLayout
.
hit
- the hit at which to generate the caretShape
representing the caret.
getCharacterLevel
public byte getCharacterLevel(int index)
index
.
Indices -1 and characterCount
are assigned the base
level of this TextLayout
.
index
- the index of the character from which to get the level
getCaretShapes
public Shape[] getCaretShapes(int offset,
Rectangle2D bounds,
TextLayout.CaretPolicy policy)
offset
- an offset in this TextLayout
bounds
- the bounds to which to extend the caretspolicy
- the specified CaretPolicy
null
.
getCaretShapes
public Shape[] getCaretShapes(int offset,
Rectangle2D bounds)
getCaretShapes
that uses the default caret policy.
offset
- an offset in this TextLayout
bounds
- the bounds to which to extend the caretsDEFAULT_CARET_POLICY
getCaretShapes
public Shape[] getCaretShapes(int offset)
getCaretShapes
that uses the default caret policy and this TextLayout
object's natural bounds.
offset
- an offset in this TextLayout
bounds
- the bounds to which to extend the caretsDEFAULT_CARET_POLICY
getLogicalRangesForVisualSelection
public int[] getLogicalRangesForVisualSelection(TextHitInfo firstEndpoint,
TextHitInfo secondEndpoint)
firstEndpoint
- an endpoint of the visual rangesecondEndpoint
- the other endpoint of the visual range.
This endpoint can be less than firstEndpoint
.getVisualHighlightShape(TextHitInfo, TextHitInfo, Rectangle2D)
getVisualHighlightShape
public Shape getVisualHighlightShape(TextHitInfo firstEndpoint,
TextHitInfo secondEndpoint,
Rectangle2D bounds)
bounds
.
bounds
. If the
selection includes the rightmost (bottommost) position, the selection
is extended to the right (bottom) of the bounds. The height
(width on vertical lines) of the selection is always extended to
bounds
.
getLogicalRangesForVisualSelection
. For example,
consider the text 'ABCdef' where capital letters indicate
right-to-left text, rendered on a right-to-left line, with a visual
selection from 0L (the leading edge of 'A') to 3T (the trailing edge
of 'd'). The text appears as follows, with bold underlined areas
representing the selection:
defCBA
The logical selection ranges are 0-3, 4-6 (ABC, ef) because the
visually contiguous text is logically discontiguous. Also note that
since the rightmost position on the layout (to the right of 'A') is
selected, the selection is extended to the right of the bounds.
firstEndpoint
- one end of the visual selectionsecondEndpoint
- the other end of the visual selectionbounds
- the bounding rectangle to which to extend the selectionShape
enclosing the selection.getLogicalRangesForVisualSelection(TextHitInfo, TextHitInfo)
,
getLogicalHighlightShape(int, int, Rectangle2D)
getVisualHighlightShape
public Shape getVisualHighlightShape(TextHitInfo firstEndpoint,
TextHitInfo secondEndpoint)
Shape
enclosing the visual selection in the
specified range, extended to the bounds. This method is a
convenience overload of getVisualHighlightShape
that
uses the natural bounds of this TextLayout
.
firstEndpoint
- one end of the visual selectionsecondEndpoint
- the other end of the visual selectionShape
enclosing the selection.
getLogicalHighlightShape
public Shape getLogicalHighlightShape(int firstEndpoint,
int secondEndpoint,
Rectangle2D bounds)
Shape
enclosing the logical selection in the
specified range, extended to the specified bounds
.
bounds
before
the start of this TextLayout
. If the range includes
the last logical character, the selection is extended to the portion
of bounds
after the end of this TextLayout
.
The height (width on vertical lines) of the selection is always
extended to bounds
.
defCBA
The selection is discontiguous because the selected characters are
visually discontiguous. Also note that since the range includes the
first logical character (A), the selection is extended to the portion
of the bounds
before the start of the layout, which in
this case (a right-to-left line) is the right portion of the
bounds
.
firstEndpoint
- an endpoint in the range of characters to selectsecondEndpoint
- the other endpoint of the range of characters
to select. Can be less than firstEndpoint
. The range
includes the character at min(firstEndpoint, secondEndpoint), but
excludes max(firstEndpoint, secondEndpoint).bounds
- the bounding rectangle to which to extend the selectiongetVisualHighlightShape(TextHitInfo, TextHitInfo, Rectangle2D)
getLogicalHighlightShape
public Shape getLogicalHighlightShape(int firstEndpoint,
int secondEndpoint)
Shape
enclosing the logical selection in the
specified range, extended to the natural bounds of this
TextLayout
. This method is a convenience overload of
getLogicalHighlightShape
that uses the natural bounds of
this TextLayout
.
firstEndpoint
- an endpoint in the range of characters to selectsecondEndpoint
- the other endpoint of the range of characters
to select. Can be less than firstEndpoint
. The range
includes the character at min(firstEndpoint, secondEndpoint), but
excludes max(firstEndpoint, secondEndpoint).Shape
enclosing the selection.
getBlackBoxBounds
public Shape getBlackBoxBounds(int firstEndpoint,
int secondEndpoint)
firstEndpoint
- one end of the character rangesecondEndpoint
- the other end of the character range. Can be
less than firstEndpoint
.path
enclosing the black box bounds.
hitTestChar
public TextHitInfo hitTestChar(float x,
float y,
Rectangle2D bounds)
TextHitInfo
corresponding to the
specified point.
Coordinates outside the bounds of the TextLayout
map to hits on the leading edge of the first logical character,
or the trailing edge of the last logical character, as appropriate,
regardless of the position of that character in the line. Only the
direction along the baseline is used to make this evaluation.
x
- the x offset from the origin of this
TextLayout
y
- the y offset from the origin of this
TextLayout
bounds
- the bounds of the TextLayout
hitTestChar
public TextHitInfo hitTestChar(float x,
float y)
TextHitInfo
corresponding to the
specified point. This method is a convenience overload of
hitTestChar
that uses the natural bounds of this
TextLayout
.
x
- the x offset from the origin of this TextLayout
y
- the y offset from the origin of this
TextLayout
hashCode
public int hashCode()
TextLayout
.
TextLayout
.
equals
public boolean equals(Object obj)
true
if the specified Object
is a
TextLayout
object and if the specified Object
equals this TextLayout
.
obj
- an Object
to test for equalitytrue
if the specified Object
equals this TextLayout
; false
otherwise.
equals
public boolean equals(TextLayout rhs)
true
if the two layouts are equal.
Two layouts are equal if they contain equal glyphvectors in the same order.
rhs
- the TextLayout
to compare to this
TextLayout
true
if the specified TextLayout
equals this TextLayout
.
toString
public String toString()
TextLayout
.
textLine
of this TextLayout
as a String
.
draw
public void draw(Graphics2D g2,
float x,
float y)
TextLayout
at the specified location in
the specified Graphics2D
context.
The origin of the layout is placed at x, y. Rendering may touch
any point within getBounds()
of this position. This
leaves the g2
unchanged.
g2
- the Graphics2D
context into which to render
the layoutx, y
- the coordinates of the origin of this
TextLayout
getBounds()
getOutline
public Shape getOutline(AffineTransform tx)
Shape
representing the outline of this
TextLayout
.
tx
- an optional AffineTransform
to apply to the
outline of this TextLayout
.Shape
that is the outline of this
TextLayout
.
Overview
Package
Class
Use
Tree
Deprecated
Index
Help
JavaTM 2 Platform
Standard Edition
PREV CLASS
NEXT CLASS
FRAMES
NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD
DETAIL: FIELD | CONSTR | METHOD
Java, Java 2D, and JDBC are a trademarks or registered trademarks of Sun Microsystems, Inc. in the US and other countries.
Copyright 1993-1999 Sun Microsystems, Inc. 901 San Antonio Road,
Palo Alto, California, 94303, U.S.A. All Rights Reserved.