Spec-Zone .ru
спецификации, руководства, описания, API

13.3.5. LOCK TABLES and UNLOCKTABLES Syntax

13.3.5.1. Interaction of Table Locking and Transactions
13.3.5.2. LOCK TABLES and Triggers
13.3.5.3. Table-Locking Restrictions and Conditions
LOCK TABLES    tbl_name [[AS] alias] lock_type    [, tbl_name [[AS] alias] lock_type] ...lock_type:    READ [LOCAL]  | [LOW_PRIORITY] WRITEUNLOCK TABLES

MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with other sessions for access to tables, or to prevent other sessions from modifying tables during periods when a session requires exclusive access to them. A session can acquire or release locks only for itself. One session cannot acquire locks for another session or release locks held by another session.

Locks may be used to emulate transactions or to get more speed when updating tables. This is explained in more detail later in this section.

LOCK TABLES explicitly acquires table locks for the current client session. Table locks can be acquired for base tables or views. You must have the LOCK TABLES privilege, and the SELECT privilege for each object to be locked.

For view locking, LOCK TABLES adds all base tables used in the view to the set of tables to be locked and locks them automatically. If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly, as described in Section 13.3.5.2, "LOCK TABLES and Triggers".

UNLOCK TABLES explicitly releases any table locks held by the current session. LOCK TABLES implicitly releases any table locks held by the current session before acquiring new locks.

Another use for UNLOCK TABLES is to release the global read lock acquired with the FLUSH TABLES WITH READ LOCK statement, which enables you to lock all tables in all databases. See Section 13.7.6.3, "FLUSH Syntax". (This is a very convenient way to get backups if you have a file system such as Veritas that can take snapshots in time.)

A table lock protects only against inappropriate reads or writes by other sessions. The session holding the lock, even a read lock, can perform table-level operations such as DROP TABLE. Truncate operations are not transaction-safe, so an error occurs if the session attempts one during an active transaction or while holding a table lock.

The following discussion applies only to non-TEMPORARY tables. LOCK TABLES is permitted (but ignored) for a TEMPORARY table. The table can be accessed freely by the session within which it was created, regardless of what other locking may be in effect. No lock is necessary because no other session can see the table.

For information about other conditions on the use of LOCK TABLES and statements that cannot be used while LOCK TABLES is in effect, see Section 13.3.5.3, "Table-Locking Restrictions and Conditions"

Rules for Lock Acquisition

To acquire table locks within the current session, use the LOCK TABLES statement. The following lock types are available:

READ [LOCAL] lock:

[LOW_PRIORITY] WRITE lock:

If the LOCK TABLES statement must wait due to locks held by other sessions on any of the tables, it blocks until all locks can be acquired.

A session that requires locks must acquire all the locks that it needs in a single LOCK TABLES statement. While the locks thus obtained are held, the session can access only the locked tables. For example, in the following sequence of statements, an error occurs for the attempt to access t2 because it was not locked in the LOCK TABLES statement:

mysql> LOCK TABLES t1 READ;mysql> SELECT COUNT(*) FROM t1;+----------+| COUNT(*) |+----------+|        3 |+----------+mysql> SELECT COUNT(*) FROM t2;ERROR 1100 (HY000): Table 't2' was not locked with LOCK TABLES

Tables in the INFORMATION_SCHEMA database are an exception. They can be accessed without being locked explicitly even while a session holds table locks obtained with LOCK TABLES.

You cannot refer to a locked table multiple times in a single query using the same name. Use aliases instead, and obtain a separate lock for the table and each alias:

mysql> LOCK TABLE t WRITE, t AS t1
        READ;mysql> INSERT INTO t SELECT * FROM t;ERROR 1100: Table 't' was not locked with LOCK TABLESmysql> INSERT INTO t SELECT * FROM t AS t1;

The error occurs for the first INSERT because there are two references to the same name for a locked table. The second INSERT succeeds because the references to the table use different names.

If your statements refer to a table by means of an alias, you must lock the table using that same alias. It does not work to lock the table without specifying the alias:

mysql> LOCK TABLE t
        READ;mysql> SELECT * FROM t AS myalias;ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:

mysql> LOCK TABLE t AS myalias READ;mysql> SELECT * FROM t;ERROR 1100: Table 't' was not locked with LOCK TABLESmysql> SELECT * FROM t AS myalias;

WRITE locks normally have higher priority than READ locks to ensure that updates are processed as soon as possible. This means that if one session obtains a READ lock and then another session requests a WRITE lock, subsequent READ lock requests wait until the session that requested the WRITE lock has obtained the lock and released it.

LOCK TABLES acquires locks as follows:

  1. Sort all tables to be locked in an internally defined order. From the user standpoint, this order is undefined.

  2. If a table is to be locked with a read and a write lock, put the write lock request before the read lock request.

  3. Lock one table at a time until the session gets all locks.

This policy ensures that table locking is deadlock free.

Note

LOCK TABLES or UNLOCK TABLES, when applied to a partitioned table, always locks or unlocks the entire table; these statements do not support partition lock pruning. See Section 18.6.4, "Partitioning and Locking".

Rules for Lock Release

When the table locks held by a session are released, they are all released at the same time. A session can release its locks explicitly, or locks may be released implicitly under certain conditions.

If the connection for a client session terminates, whether normally or abnormally, the server implicitly releases all table locks held by the session (transactional and nontransactional). If the client reconnects, the locks will no longer be in effect. In addition, if the client had an active transaction, the server rolls back the transaction upon disconnect, and if reconnect occurs, the new session begins with autocommit enabled. For this reason, clients may wish to disable auto-reconnect. With auto-reconnect in effect, the client is not notified if reconnect occurs but any table locks or current transaction will have been lost. With auto-reconnect disabled, if the connection drops, an error occurs for the next statement issued. The client can detect the error and take appropriate action such as reacquiring the locks or redoing the transaction. See Section 22.8.16, "Controlling Automatic Reconnection Behavior".

Note

If you use ALTER TABLE on a locked table, it may become unlocked. For example, if you attempt a second ALTER TABLE operation, the result may be an error Table 'tbl_name' was not locked with LOCK TABLES. To handle this, lock the table again prior to the second alteration. See also Section C.5.7.1, "Problems with ALTER TABLE".