Spec-Zone .ru
спецификации, руководства, описания, API
|
Table of Contents
InnoDB
Storage EngineInnoDB
TablesInnoDB
InnoDB
Concepts and ArchitectureInnoDB
Performance Tuning and TroubleshootingInnoDB
Features for Flexibility, Ease of Use
andReliabilityInnoDB
Startup Options and System VariablesInnoDB
TablesMyISAM
Storage EngineMEMORY
Storage EngineCSV
Storage EngineARCHIVE
Storage EngineBLACKHOLE
Storage EngineMERGE
Storage EngineFEDERATED
Storage EngineEXAMPLE
Storage Engine Storage engines are MySQL components that handle the SQL operations for different table types. InnoDB
is the most general-purpose storage engine, and Oracle recommends using it
for tables except for specialized use cases. (The CREATE
TABLE
statement in MySQL 5.6 creates InnoDB
tables by default.)
MySQL Server uses a pluggable storage engine architecture that enables storage engines to be loaded into and unloaded from a running MySQL server.
To determine which storage engines your server supports, use the SHOW ENGINES
statement. The value in the Support
column indicates whether an engine can be used. A value of YES
, NO
, or DEFAULT
indicates that an engine is
available, not available, or available and currently set as the default storage engine.
This chapter primarily describes the features and performance characteristics of InnoDB
tables. It also covers the use cases for the special-purpose MySQL storage
engines, except for NDB
which is covered in Chapter
17, MySQL Cluster NDB 7.3. For advanced users, it also contains a description of the pluggable
storage engine architecture (see Section 14.12,
"Overview of MySQL Storage Engine Architecture").
For information about storage engine support offered in commercial MySQL Server binaries, see
For answers to some commonly asked questions about MySQL storage engines, see Section B.2, "MySQL 5.6 FAQ: Storage Engines".
InnoDB
:
A transaction-safe (ACID compliant) storage engine for MySQL that has commit, rollback, and
crash-recovery capabilities to protect user data. InnoDB
row-level locking
(without escalation to coarser granularity locks) and Oracle-style consistent nonlocking reads increase
multi-user concurrency and performance. InnoDB
stores user data in
clustered indexes to reduce I/O for common queries based on primary keys. To maintain data integrity,
InnoDB
also supports FOREIGN KEY
referential-integrity constraints. InnoDB
is the default storage engine in
MySQL 5.6.
MyISAM
:
These tables have a small footprint. Table-level locking limits the
performance in read/write workloads, so it is often used in read-only or read-mostly workloads in Web
and data warehousing configurations.
Memory
:
Stores all data in RAM, for fast access in environments that require quick lookups of non-critical data.
This engine was formerly known as the HEAP
engine. Its use cases are
decreasing; InnoDB
with its buffer pool memory area provides a
general-purpose and durable way to keep most or all data in memory, and NDBCLUSTER
provides fast key-value lookups for huge distributed data
sets.
CSV
: Its
tables are really text files with comma-separated values. CSV tables let you import or dump data in CSV
format, to exchange data with scripts and applications that read and write that same format. Because CSV
tables are not indexed, you typically keep the data in InnoDB
tables during
normal operation, and only use CSV tables during the import or export stage.
Archive
:
These compact, unindexed tables are intended for storing and retrieving large amounts of
seldom-referenced historical, archived, or security audit information.
Blackhole
:
The Blackhole storage engine accepts but does not store data, similar to the Unix /dev/null
device. Queries always return an empty set. These tables can be used in replication configurations where
DML statements are sent to slave servers, but the master server does not keep its own copy of the data.
NDB
(also known as NDBCLUSTER
)—This clustered database engine is particularly suited for
applications that require the highest possible degree of uptime and availability.
The NDB
storage engine is not supported in standard MySQL 5.6 releases. Currently supported MySQL
Cluster releases include MySQL Cluster NDB 7.0 and MySQL Cluster NDB 7.1, which are based on
MySQL 5.1; MySQL Cluster NDB 7.2, which is based on MySQL 5.5; and MySQL Cluster NDB 7.3, which
is based on MySQL 5.5. While based on MySQL Server, these releases also contain support for NDB
.
Merge
:
Enables a MySQL DBA or developer to logically group a series of identical MyISAM
tables and reference them as one object. Good for VLDB
environments such as data warehousing.
Federated
:
Offers the ability to link separate MySQL servers to create one logical database from many physical
servers. Very good for distributed or data mart environments.
Example
: This engine serves as an example in the MySQL source code that
illustrates how to begin writing new storage engines. It is primarily of interest to developers. The
storage engine is a "stub" that does nothing. You
can create tables with this engine, but no data can be stored in them or retrieved from them.
You are not restricted to using the same storage engine for an entire server or schema. You can specify the
storage engine for any table. For example, an application might use mostly InnoDB
tables, with one CSV
table for exporting data to a spreadsheet and a few MEMORY
tables for temporary workspaces.
Choosing a Storage Engine
The various storage engines provided with MySQL are designed with different use cases in mind. The following table provides an overview of some storage engines provided with MySQL:
Table 14.1. Storage Engines Feature Summary
Feature | MyISAM | Memory | InnoDB | Archive | NDB |
---|---|---|---|---|---|
Storage limits | 256TB | RAM | 64TB | None | 384EB |
Transactions | No | No | Yes | No | Yes |
Locking granularity | Table | Table | Row | Table | Row |
MVCC | No | No | Yes | No | No |
Geospatial data type support | Yes | No | Yes | Yes | Yes |
Geospatial indexing support | Yes | No | No | No | No |
B-tree indexes | Yes | Yes | Yes | No | No |
T-tree indexes | No | No | No | No | Yes |
Hash indexes | No | Yes | No[a] | No | Yes |
Full-text search indexes | Yes | No | Yes[b] | No | No |
Clustered indexes | No | No | Yes | No | No |
Data caches | No | N/A | Yes | No | Yes |
Index caches | Yes | N/A | Yes | No | Yes |
Compressed data | Yes[c] | No | Yes[d] | Yes | No |
Encrypted data[e] | Yes | Yes | Yes | Yes | Yes |
Cluster database support | No | No | No | No | Yes |
Replication support[f] | Yes | Yes | Yes | Yes | Yes |
Foreign key support | No | No | Yes | No | No |
Backup / point-in-time recovery[g] | Yes | Yes | Yes | Yes | Yes |
Query cache support | Yes | Yes | Yes | Yes | Yes |
Update statistics for data dictionary | Yes | Yes | Yes | Yes | Yes |
[a] InnoDB utilizes hash indexes internally for its Adaptive Hash Index feature. [b] InnoDB support for FULLTEXT indexes is available in MySQL 5.6.4 and higher. [c] Compressed MyISAM tables are supported only when using the compressed row format. Tables using the compressed row format with MyISAM are read only. [d] Compressed InnoDB tables require the InnoDB Barracuda file format. [e] Implemented in the server (via encryption functions), rather than in the storage engine. [f] Implemented in the server, rather than in the storage engine. [g] Implemented in the server, rather than in the storage engine. |